听说房子降价了,用python爬虫看一下数据!

随着城市化的进程不断加快,房地产市场已成为现代社会中最重要的经济领域之一,房价信息也成为人们关注的焦点。

本文将介绍如何使用Python爬虫技术来获取最新的兰州房价信息。

一、爬虫原理

爬虫本质上是一种网络爬行技术,通过模拟网络浏览器的行为,自动抓取网页信息,并进行数据处理。具体而言,爬虫的工作流程如下:

  1. 发送请求:使用HTTP协议向目标网站发送请求,获取指定页面的HTML代码;

  2. 解析HTML代码:使用HTML解析器对HTML代码进行解析,提取出需要的数据;

  3. 存储数据:将获取到的数据存储到本地数据库或文件中,以备后续分析使用。

二、准备工作

在开始编写爬虫之前,我们需要先安装必要的Python库:

  1. requests:用于向网站发送HTTP请求,获取HTML代码;

  2. BeautifulSoup:用于解析HTML代码,提取需要的数据;

  3. pandas:用于数据清洗和存储。

您可以通过以下命令来安装这些库:

pip install requests
pip install beautifulsoup4
pip install pandas

三、爬虫实现

  1. 获取网页内容

首先,我们需要找到兰州房价信息所在的网站。通过搜索引擎可以找到兰州房价网站,该网站的地址为http://www.lzfcw.com/。

接下来,我们需要使用requests库中的get()方法向该网站发送请求,获取HTML代码。代码如下:

import requests
url = 'http://www.lzfcw.com/'
response = requests.get(url)
html = response.text

  1. 解析HTML代码

得到HTML代码后,我们需要使用BeautifulSoup库对其进行解析,提取所需的数据。在解析之前,我们需要先查看网页源代码,确定需要提取的数据所在的HTML标签。

通过观察源代码,我们发现所有房价信息都在class为“fjlist”的div标签中,每条房价信息又分别在class为“fjinfo”的div标签中。

因此,我们可以使用BeautifulSoup库的find_all()方法来查找所有“fjinfo”标签,并依次提取每个标签中的内容,代码如下:

from bs4 import BeautifulSoup
soup = BeautifulSoup(html, 'html.parser')
fjlist = soup.find_all('div', class_='fjlist')
for fj in fjlist:
    fjinfo = fj.find_all('div', class_='fjinfo')
    for info in fjinfo:
        # 提取房价信息

  1. 提取数据并存储

在提取房价信息时,我们需要分别提取房屋名称、所在区域、总价、单价、面积等数据。具体而言,我们可以使用BeautifulSoup库中的string属性来获取标签中的文本内容。

另外,为了方便后续的数据分析,我们还需要将提取到的数据存储到本地文件中。

这里我们使用pandas库中的DataFrame数据结构来存储数据,并使用to_csv()方法将其保存为CSV文件。代码如下:

import pandas as pd
# 存储房价信息的列表
data = []
for fj in fjlist:
    fjinfo = fj.find_all('div', class_='fjinfo')
    for info in fjinfo:
        # 提取房价信息
        name = info.find('h4').string
        area = info.find('p', class_='area').string.strip()
        price = info.find('p', class_='price').string.strip()
        unitprice = info.find('p', class_='unitprice').string.strip()
        # 将数据存储到data列表中
        data.append([name, area, price, unitprice])
# 将data列表转换为DataFrame对象,并保存为CSV文件
df = pd.DataFrame(data, columns=['name', 'area', 'price', 'unitprice'])
df.to_csv('兰州房价信息.csv', index=False, encoding='utf-8')

四、完整代码

最终的爬虫代码如下:

import requests
from bs4 import BeautifulSoup
import pandas as pd
url = 'http://www.lzfcw.com/'
response = requests.get(url)
html = response.text
soup = BeautifulSoup(html, 'html.parser')
fjlist = soup.find_all('div', class_='fjlist')
data = []
for fj in fjlist:
    fjinfo = fj.find_all('div', class_='fjinfo')
    for info in fjinfo:
        name = info.find('h4').string
        area = info.find('p', class_='area').string.strip()
        price = info.find('p', class_='price').string.strip()
        unitprice = info.find('p', class_='unitprice').string.strip()
        data.append([name, area, price, unitprice])
df = pd.DataFrame(data, columns=['name', 'area', 'price', 'unitprice'])
df.to_csv('兰州房价信息.csv', index=False, encoding='utf-8')

五、总结

本文介绍了如何使用Python爬虫技术来获取最新的兰州房价信息。通过学习本文的内容,你可以了解到爬虫的基本原理和流程,掌握如何使用Python库来实现简单的爬虫程序。

并将爬取到的数据存储到本地文件中。希望这篇文章能够帮助你更好地理解爬虫技术的应用。

Python经验分享

学好 Python 不论是就业数据分析还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

Python学习路线

这里把Python常用的技术点做了整理,有各个领域的知识点汇总,可以按照上面的知识点找对应的学习资源。
在这里插入图片描述

学习软件

Python常用的开发软件,会给大家节省很多时间。
在这里插入图片描述

学习视频

编程学习一定要多多看视频,书籍和视频结合起来学习才能事半功倍。
在这里插入图片描述

100道练习题

在这里插入图片描述

实战案例

光学理论是没用的,学习编程切忌纸上谈兵,一定要动手实操,将自己学到的知识运用到实际当中。
在这里插入图片描述
最后祝大家天天进步!!

上面这份完整版的Python全套学习资料已经上传至CSDN官方,朋友如果需要可以直接微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员二飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值