如何将大模型应用到自己的业务中?7种大模型应用方式和代表论文总结

如何将大模型应用落地到自己的业务或工作中?这篇文章整理了7种目前业内最常用的大模型应用方法,以及各个方法的代表论文。通过对各种应用大模型方法的特点对比,找到最适合自己场景的应用方法。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

1

Pretrain-Finetune

直接针对下游任务进行全量参数或者部分参数的finetune,在BERT时期是主要的大模型应用方式。其局限性是成本较高,灵活性较差,需要针对每个任务单独finetune和保存一组模型,可复用性较低。

2

Prompt

Prompt是GPT以来的一种大模型应用方式,基于生成式语言模型(Transformer Decoder),将下游任务通过prompt的形式转换成完形填空任务,让模型预测缺失部分的文本,再将文本映射回对应任务的label。Prompt方式完全不进行大模型finetune,只利用大模型内部的知识,让下游任务反向适配预训练任务。其缺陷在于效果非常依赖于人工定义的prompt。

3

Prompt-tuning

Prompt-tuning不人工设定prompt,而是将其转换为可学习的向量。例如原来的prompt为The capital of Y is …,这里Y是上下文,其他部分是prompt模板,那么prompt-tuning将这些明文的prompt token全部替换成可学习的向量,基于训练数据对模型进行finetune,只finetune这些prompt embedding,模型主体参数固定不变。。这种方式不再依赖人工定义prompt明文模板,交给模型自己去学,同时需要finetune的参数量也比较小。

代表论文:P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks(2021)、GPT Understands, Too(2021)

9e6bad5d10d49d5a8fd63431d3759d6b.png

4

Prefix-tuning

与prompt-tuning的思路非常类似,prefix-tuning在输入文本前面加入一些任务特定的可学习参数,这些参数跟随下游任务做finetune,预训练模型整体参数固定不变。Prefix-tuning和prompt-tuning是同一时期的两类工作,二者核心思路是相同的,都是用一小部分参数的finetune(prefix对应的前缀向量,或prompt对应的模板向量)让大模型适配下游任务,二者区别不大。

代表论文:Prefix-Tuning: Optimizing Continuous Prompts for Generation(2021)

8784af6344a48f51844eca8743fb292e.png

5

Adapter-tuning

在大模型的中间部分加一个参数量较小的网络结构(即adapter),大模型整体参数freeze不变,只更新adapter部分的参数。Adapter一般采用bottleneck的结构,缩小参数量。本质上也是一种通过少量参数的更新影响大模型整体参数的finetune方式。

代表论文:Parameter-Efficient Transfer Learning for NLP(ICML 2019)

324444dbb1777fb0610e97a4c4b4262d.png

6

Instruction-tuning

Instruction-tuning将所有下游的各类NLP任务都转换为自然语言,在大模型的基础上finetune全部参数,finetune的目标就是语言模型,通过这种方式让预训练大模型适应人类的指令(即人类描述各类NLP任务,并要求模型给出答案的语言范式),进而有效解决各类NLP任务,具备强大的zero-shot learning能力。

719b18cd38e994a09c3f563b983c84f6.png

7

Knowledge Distillition

从大模型中获取数据,用获取到的数据训练尺寸更小的模型,过程中结合思维链等技术,让模型生成更有价值更准确的训练数据。这种方式也是成本最低,但是可能很有效果的方法。最简单的就是直接调用ChatGPT或者GPT4的接口获取想要的数据,核心是如何设计prompt让黑盒大模型输出我们想要的结果。

代表论文:Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员二飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值