轻松搭建:本地大模型与知识库的简便方法

01、本地大模型越来越简单

经过了一年多时间的迭代,大模型种类繁多,使用也越来越简单了。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

在本地跑大模型,个人认为目前最好的软件肯定是Ollama无疑了,

不管你是在PC上跑大模型,在Mac上跑大模型,还有在树莓派上跑大模型,

我们都可以用Ollama去跑各种大大小小的模型,而且它的扩展性非常强。

02、Ollama本地运行大模型

现在安装Ollama超级简单的,只需要进入[Ollama官网下载安装包,然后安装即可。

以下是我个人安装为例(macOS系统):

  • 1、下载

ai_5_1_ollama下载.webp

  • 2、安装

ai_5_2_安装.webp

直接点击Next:

ai_5_3_安装命令.webp

  • 3、命令查看

ai_5_4_版本和使用的命令.webp

  • 4、运行

ai_5_5_启动运行.webp

  • 其他说明

如果自己不确定模型名称可以去官网查看[模型]

ai_5_6_模型查询.webp

每款大模型都有不同版本,根据自己的机器来选择,根据官网的文档也说明了,一般7B的模型至少需要8G的内存,13B的模型至少需要16G内存,70B的模型至少需要64G内存。

ai_5_7_内存需求.webp

03、使用Web UI界面连接Ollama

ollama没有界面化的页面使用,它是在终端里交互的,所有我们要使用图形化的界面里去操作,这是我们可以使用Open WebUI。

Open WebUI是一个开源的Web UI界面,github地址:[github.com/open-webui/…]

  • 1、下载和运行

使用Docker方式运行Open WebUI,直接一条命令解决下载和运行:

ai_5_8_open-webui启动命令.webp

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v open-webui:/app/backend/data --name open-webui --restart always ghcr.io/open-webui/open-webui:main


命令解释:

  • -d:后台运行
  • -p 3000:8080:将容器的8080端口映射到主机的3000端口
  • --add-host=host.docker.internal:host-gateway:添加主机映射,用于访问主机的Docker容器
  • -v open-webui:/app/backend/data:将主机的open-webui目录映射到容器的/app/backend/data目录
  • --name open-webui:设置容器名称
  • --restart always:设置容器总是重启
  • ghcr.io/open-webui/open-webui:main:镜像地址

启动日志:

ai_5_8_open-webui启动日志.webp

注意:open-webui启动时有点慢,需要等待一会。可以通过docker logs open-webui查看日志。红框的可以不用理会。

  • 2、注册

第一次使用时需要进行注册,这个数据都是本地存储。

ai_5_10_open-webui注册.webp

  • 3、登录

ai_5_9_open-webui登录.webp

  • 4、open-webui使用界面

ai_5_11_open-webui界面.webp

  • 4、设置

ai_5_12_open-webui设置界面.webp

  • 5、模型选择

ai_5_13_open-webui模型选择.webp

04、本地化知识库

1、open-webui界面文档设置

ai_5_14_open-webui文档设置.webp

2、加载网页或者文档

在对话窗口通过#+链接加载网页,通过对话框的+上传文件,也可以在文档中导入。

ai_5_15_open-webui文档或者网页加载.webp

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
在这里插入图片描述

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员二飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值