在Cursor上部署DeepSeek,实现最强AI编程

大家知道Cursor是一款全球流行的AI代码编辑器,有人用它写过APP、网站、游戏等,8岁的小孩都能两个小时内开发个像模像样的软件。


Cursor界面类似VsCode,可以连接gpt-4o、claude-3.5等模型,通过对话聊天形式让AI大模型自主编程,支持生成代码文件、补全代码、预测代码、智能debug等功能,非常的强大,实测下来比Vscode上AI插件Cline、Continue要好用。


之前Cursor只支持国外几种主流大模型,由于DeepSeek全球范围的出圈以及超强的性能表现,Cursor在今年一月份更新版本,内置支持连接Deepseek-R1、DeepSeek V3大模型,用于AI辅助编程。

要知道DeepSeek是Cursor唯一内置的来自中国的大模型,可见Cursor对其认可度非常高,其他都是美国的主流模型,像ChatGPT、Claude、Gemini。

下面讲讲在Cursor上使用DeepSeek编程的两种方式。

第一种是直接使用内置的deepseek-r1、deepseek v3模型,无需任何配置,下载安装好Cursor就可以使用,但需要购买Cursor的会员,还挺贵的,Pro版需要20刀每月。

但新用户有两周的试用时间,可以玩玩上面的各种模型,也是不错的体验。


第二种是在Cursor 中添加自定义deepseek-chat模型(已升级为 deepseek-v3),将其集成到Cursor工作流程中,这需要一定的配置步骤,也是下面详细讲的。

1、下载和安装Cursor

你需要到Cursor官网下载Cursor,并安装到本地电脑中,安装过程和VsCode非常相似,不需要任何手动配置工作。

安装好后打开Cursor,选择工作目录就能直接进入Cursor界面,是不是和VsCode非常像。

然后根据你使用编程语言来配置相应的解释器,比如我用的Python3.11

 

2、配置deepseek-chat模型

你需要在Cursor settings里配置相关模型,打开右上角的设置按钮,并点击models,就可以看到一堆模型。


里面也有deepseek-chat模型,但这是我配置好的,不是默认的内置模型。

接下来点击add model按钮,新建deepseek-chat模型,记住名字不要错。


然后配置API接口地址和Key,在OpenAI API Key窗口配置deepseek-chat模型信息,因为DeepSeek提供对 OpenAI API 格式的支持。

你要做的有三步:

1、填写deepseek-chat模型API接口地址,如下:https://api.deepseek.com

2、填写DeepSeek key,这个可以去DeepSeek官网申请

3、点击Verify按钮确认是否配置成功,没有报错即可


配置好后,我们打开AI聊天窗口,就可以和deepseek-chat模型对话来自动编程。


比如我给出一个提示:

请使用Python写一个预测模型,用于预测某只股票走势,你需要自定义虚拟数据。

deepseek-chat模型会立即输出相应代码,非常的快。


但不好的消息是,目前在 Cursor 中集成自定义 deepseek-chat 模型,仅支持 Chat 模式,没办法应用代码到编辑器文件中,也不支持 Composer 模式。

这里简单说下Cursor的两种AI编程模式,Chat和Composer。

Chat模式类似于ChatGPT、豆包之类的对话AI,会根据你的需求生成代码,也可以回答其他各种问题,可以按按 Ctrl + L,打开 Chat 面板。

Composer模式则支持大规模代码实时生成和修改,还有代码文件编辑和生成,结合 AI 进行代码重构、补全或生成等,可以按 Ctrl + I 打开 Composer 面板。

比如我尝试用Cursor内置的gpt-4o模型写一个贪吃蛇小游戏,这里就需要使用Composer模式。

提示:

使用Python写一个贪吃蛇小游戏,要求操作简单,界面UI美观。

这时候Cursor会直接生成一个.py文件,只需你点击Accept all后,就可以执行文件。


生成的效果如下,界面比较简单,可以通过上下左右来操控游戏。


Composer模式支持直接对代码进行修改更新,比如对贪吃蛇代码进行优化。

提示:

添加游戏开始结束界面,美化界面设计,添加边框,添加背景网格,优化显示效果,添加积分系统




修改后的界面比一开始的要美观不少,而且功能也更丰富,比如加入了计分系统。

最后还要讲下Cursor的王牌功能,"Tab, tab, tab"。

在 Cursor 中,"Tab, tab, tab" 是指Tab键的AI代码补全功能。Cursor 通过Tab键 让AI参与代码补全,和GitHub Copilot差不多,但更智能。

为什么Cursor代码补全会更智能?因为Cursor不仅分析当前文件,还能结合整个项目上下文,理解多文件代码逻辑。

每按一次Tab,Cursor会逐步扩展补全,让 AI 继续补全代码块,甚至整个函数、类或逻辑流,而Copilot只能一次性补全固定内容。


这就是Cursor,非常的简单且强大, 我只是演示了核心功能,其他还有很好玩的部分等你去研究,比如批量代码替换、代码解释与学习、自动生成注释等,而且Cursor内置终端、集成Git、支持 VSCode 插件,几乎一个终端能完成编程所有事情。

### Cursor 本地大模型使用方法及教程 #### 安装环境准备 为了在本地环境中运行Cursor的大规模语言模型,需先安装必要的依赖库和配置开发环境。确保已安装Python解释器以及pip包管理工具。 对于Linux或MacOS操作系统用户而言,推荐创建虚拟环境来隔离项目依赖关系: ```bash python3 -m venv cursor_env source cursor_env/bin/activate ``` 接着更新`pip`至最新版本并安装所需软件包: ```bash pip install --upgrade pip pip install torch transformers datasets sentencepiece ``` 上述命令会下载PyTorch框架、Hugging Face Transformers库以及其他支持组件[^1]。 #### 下载预训练模型 访问官方GitHub仓库或其他可信资源站点获取目标预训练模型权重文件。通常情况下,这些文件会被压缩打包成`.tar.gz`格式以便于分发传输。解压后可得到一系列构成整个模型结构的数据集与参数表单。 假设已经获得了一个名为`cursor_model.tar.gz`的归档文件,则可以通过如下指令完成部署前准备工作: ```bash mkdir models && cd models tar -xzf ../cursor_model.tar.gz cd .. ``` 此时,在当前目录下应当存在一个叫做`models`的新建子文件夹用于存放所提取出来的各项资产[^2]。 #### 加载与初始化模型实例 利用Python脚本加载刚刚放置好的预训练成果,并构建相应的推理管道对象以供后续调用。下面给出了一段示范性的源码片段说明如何实现这一过程: ```python from transformers import AutoModelForSeq2SeqLM, AutoTokenizer model_name_or_path = "./models/cursor/" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) def generate_code(prompt_text): inputs = tokenizer([prompt_text], return_tensors="pt", max_length=512, truncation=True) outputs = model.generate(**inputs, num_beams=4, no_repeat_ngram_size=2, min_length=0, max_length=512) generated_sequence = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_sequence.strip() ``` 此部分代码定义了一个函数`generate_code()`接受字符串类型的输入作为提示信息,经过编码转换为张量形式送入神经网络内部处理之后再还原回人类可读的文字表述返回给调用者[^3]。 #### 实际应用案例展示 现在可以尝试向该接口发送一些简单的请求看看效果怎样。比如想要快速搭建一个Web服务器监听80端口响应HTTP GET请求时,只需传递相应的需求描述即可自动生成满足条件的基础版程序清单: ```python if __name__ == "__main__": prompt = "Create a simple HTTP server listening on port 80 that responds to GET requests." result = generate_code(prompt) print(result) ``` 执行以上测试用例将会输出一段能够正常工作的Python代码片段负责启动指定功能的服务进程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiangzhihong8

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值