第二类斯特林数
DoBelieve
天空越暗的时候,你越能看到星辰。
展开
-
第二类斯特林数与自然数幂和
一般求法一般求自然数幂和都会用到拉格朗日插值法,但仅当存在逆元的时候能用,给出一种用第二类斯特林数求自然数幂和的方法,时间复杂度是O(k2)O(k2)O(k^2)而不是O(k log k)O(k log k)O(k\ log\ k)的。F(x)=∑i≥0xii!∑j=1F{Fj}ij–F(x)=∑i≥0xii!∑j=1F{Fj}ij_F(x)=\...原创 2018-05-21 12:34:35 · 1551 阅读 · 1 评论 -
JZOJ 5680 绝对伏特加
Description进行nn轮随机数生成,每轮的数值在[11,KK]中随机出现。记aia_i表示nn轮投掷中,数值ii出现的次数,求(ΠLi=1ai)F(\Pi_{i=1}^La_i)^F的期望。答案对20032003取模。Solution0≤n,K≤1090≤n,K≤10^9 ,0<F≤1030<F≤10^3,0<L∗F≤500000<L∗F≤50000,L≤KL≤KSolution先把每个数被原创 2018-04-27 14:51:17 · 506 阅读 · 0 评论 -
51Nod 1847 奇怪的数学题
奇怪的数学题传送门DescriptionSolution考虑枚举gcd。 Ans=∑d=1n(dminp(d))k∑j=1n∑k=1n[(j,k)=d]Ans=∑d=1n(dminp(d))k∑j=1n∑k=1n[(j,k)=d]Ans=\sum_{d=1}^n(\frac{d}{minp(d)})^k\sum_{j=1}^n\sum_{k=1}^n[(j,k)=d] ...原创 2018-05-22 22:48:10 · 566 阅读 · 0 评论 -
JZOJ 5746 和
Description给定mmm和kkk,共TTT次询问,每次询问一个nnn,输出∑ni=1ik&nbsp;mod&nbsp;m∑i=1nik&nbsp;mod&nbsp;m\sum_{i=1}^ni^k\ mod\ m 数据保证mmm的最大值质因子不超过3∗1053∗1053*10^5。Data Constraints2≤n,m,k≤1018&nbsp;1≤T≤3∗1032≤n,m...原创 2018-06-03 22:17:39 · 1370 阅读 · 0 评论