Faster rcnn 实战

本文记录了一位开发者在Ubuntu 18.04上使用TensorFlow-GPU 1.2、CUDA 9.0和Cudnn v7.1.4进行Faster R-CNN实战时遇到的问题及解决过程。在运行代码时遇到CUDA驱动不匹配、TensorFlow版本问题、conda与pip环境冲突、numpy版本不适配以及权重文件下载困难等挑战。
摘要由CSDN通过智能技术生成

系统:Ubuntu 18.04

显卡:GeForce GTX 1080

环境:Python 3.6+TensorFlow-gpu 1.2+Cuda 9.0+Cudnn v7.1.4

使用代码:tf-faster-rcnn

  1. 根据此博客流程到前8步
  2. 第9步,运行代码时出现报错,提示>CUDA driver version is insufficient for CUDA runtime version
  3. 根据此链接修改了自己的cuda和cudnn版本,但是报错缺tensorflow.contrib.slim.尝试装了一下也不行,后来发现我的tensorflow问题很大,查版本的功能都无法使用了。于是乎,在conda里面卸载tensorflow竟然告诉我没有这个包,又用pip我的天,又可以了,原来两者是互相隔离的。卸载之后又重新在本机用pip 安装了tensorflow-gpu1.10.0,而且tensorboard的版本也自动变成了
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值