#计算根号K的值

法一:二分法

#include<iostream>
#include<cmath>
using namespace std;
double MySqrt(double n)
{
    //此处一定为浮点数,不要用整数
    double _max = n;
    double _min = 0.0;
    //此处为精度,当满足该精度时,返回该近似值
    double p = 1e-5;
    double  mid = (_max + _min) / 2.0;
    //此处是浮点数之差的绝对值与精度进行比较
    while(fabs(mid * mid - n) > p)
    {
        if(mid * mid < n)
            _min = mid;
        else if(mid * mid > n)
            _max = mid;
        else
            return mid;
        mid = (_max + _min) / 2.0;
    }
    return mid;
}
int main()
{
    cout<<MySqrt(2)<<endl;
}

法二:牛顿迭代法
问题简化为:求f(x)=x的平方-K这个函数与横轴的交点横坐标问题。

根据牛顿迭代公式
根据公式
带入f(x),可以得到f(x)的导数
最终的Xn+1=(Xn的平方+K)/2Xn
因此可以不断进行迭代,使得结果更加精确

double Sqr(double k) {
    double x = k; // 当前迭代的x
    double y = 0.0; // 上一次的迭代结果
    // 两次迭代的差值非常小时,便接近结果了
    while (fabs(x - y) > 0.00001) {
        // 保存上一次迭代的结果
        y = x;
        // 求解新的x
        x = (x * x + k) / (2 * x);
    }
    return x;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值