法一:二分法
#include<iostream>
#include<cmath>
using namespace std;
double MySqrt(double n)
{
//此处一定为浮点数,不要用整数
double _max = n;
double _min = 0.0;
//此处为精度,当满足该精度时,返回该近似值
double p = 1e-5;
double mid = (_max + _min) / 2.0;
//此处是浮点数之差的绝对值与精度进行比较
while(fabs(mid * mid - n) > p)
{
if(mid * mid < n)
_min = mid;
else if(mid * mid > n)
_max = mid;
else
return mid;
mid = (_max + _min) / 2.0;
}
return mid;
}
int main()
{
cout<<MySqrt(2)<<endl;
}
法二:牛顿迭代法
问题简化为:求f(x)=x的平方-K这个函数与横轴的交点横坐标问题。
根据牛顿迭代公式
带入f(x),可以得到f(x)的导数
最终的Xn+1=(Xn的平方+K)/2Xn
因此可以不断进行迭代,使得结果更加精确
double Sqr(double k) {
double x = k; // 当前迭代的x
double y = 0.0; // 上一次的迭代结果
// 两次迭代的差值非常小时,便接近结果了
while (fabs(x - y) > 0.00001) {
// 保存上一次迭代的结果
y = x;
// 求解新的x
x = (x * x + k) / (2 * x);
}
return x;
}