Time Limit: 3000MS | Memory Limit: Unknown | 64bit IO Format: %lld & %llu |
Description
Problem D
EulerCircuit
Input: standard input
Output: standard output
Time Limit: 2 seconds
AnEuler circuit is a graph traversal starting and ending at the same vertex andusing every edge exactly once. Finding an Euler circuit in an undirected ordirected graph is a fairly easy task, but what about graphs where some of theedges are directed and some undirected? An undirected edge can only be traveledin one direction. However, sometimes any choice of direction for the undirectededges may not yield an Euler circuit.
Givensuch a graph, determine whether an Euler circuit exists. If so, output such acircuit in the format specified below. You can assume that the underlyingundirected graph is connected.
Input
The first line in the inputcontains the number of test cases, at most 20.Each test case starts with a line containing two numbers, Vand E:the number of vertices (1 <= V <= 100) andedges (1<= E <= 500) in the graph. The verticesare numbered from 1 to V.Then follows Elines specifying the edges. Each such line will be in the format a b typewhere aand bare two integers specifying the endpoints of the edge. type will eitherbe the character 'U',if the edge is undirected, or 'D', if the edge is directed. Inthe latter case, the edge starts at a andends at b.
Output
If anEuler circuit exist, output an order in which the vertices can be traversed ona single line. The vertex numbers should be delimited with a single space, andthe start and end vertex should be included both at the beginning and the endof the sequence. Since most graphs have multiple solutions, any valid solutionwill be accepted. If no solution exist, output the line "No euler circuitexist". Output a blank line between each test case.
Sample Input Output for Sample Input
2 6 8 1 3 U 1 4 U 2 4 U 2 5 D 3 4 D 4 5 U 5 6 D 5 6 U 4 4 1 2 D 1 4 D 2 3 U 3 4 U
| 1 3 4 2 5 6 5 4 1
No euler circuit exist
|
欧拉回路的判定与前面的方法一样,关键是路径输出问题,跑最大流之后,流量不为0的边就是需要改变的边,
忘记清空数组导致wa纠结了一下午。
代码:
#pragma comment(linker, "/STACK:102400000,102400000")
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <string>
#include <time.h>
#include <math.h>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define eps 1e-8
#define pi acos(-1.0)
typedef long long ll;
const int maxn=20100;
const int maxm=1002000;
struct Edge{
int next,to,cap;
Edge(){};
Edge(int _next,int _to,int _cap){
next=_next;to=_to;cap=_cap;
}
}edge[maxm];
int head[maxn],tol,dep[maxn],gap[maxn];
void addedge(int u,int v,int flow){
edge[tol]=Edge(head[u],v,flow);head[u]=tol++;
edge[tol]=Edge(head[v],u,0);head[v]=tol++;
}
void bfs(int start,int end){
memset(dep,-1,sizeof(dep));
memset(gap,0,sizeof(gap));
gap[0]++;int front=0,rear=0,Q[maxn];
dep[end]=0;Q[rear++]=end;
while(front!=rear){
int u=Q[front++];
for(int i=head[u];i!=-1;i=edge[i].next){
int v=edge[i].to;if(dep[v]==-1)
Q[rear++]=v,dep[v]=dep[u]+1,gap[dep[v]]++;
}
}
}
int sap(int s,int t,int N){
int res=0;bfs(s,t);
int cur[maxn],S[maxn],top=0,u=s,i;
memcpy(cur,head,sizeof(head));
while(dep[s]<N){
if(u==t){
int temp=INF,id;
for( i=0;i<top;i++)
if(temp>edge[S[i]].cap)
temp=edge[S[i]].cap,id=i;
for( i=0;i<top;i++)
edge[S[i]].cap-=temp,edge[S[i]^1].cap+=temp;
res+=temp;top=id;u=edge[S[top]^1].to;
}
if(u!=t&&gap[dep[u]-1]==0)break;
for( i=cur[u];i!=-1;i=edge[i].next)
if(edge[i].cap&&dep[u]==dep[edge[i].to]+1)break;
if(i!=-1)cur[u]=i,S[top++]=i,u=edge[i].to;
else{
int MIN=N;
for( i=head[u];i!=-1;i=edge[i].next)
if(edge[i].cap&&MIN>dep[edge[i].to])
MIN=dep[edge[i].to],cur[u]=i;
--gap[dep[u]];++gap[dep[u]=MIN+1];
if(u!=s)u=edge[S[--top]^1].to;
}
}
return res;
}
int in[maxn],out[maxn],Head[maxn],tot,ans[maxn],top;
struct NODE{
int next,to,vis;
}Edge[maxm];
void add(int u,int v){
Edge[tot].to=v;
Edge[tot].next=Head[u];
Edge[tot].vis=0;
Head[u]=tot++;
}
void dfs(int u){
for(int i=Head[u];i!=-1;i=Edge[i].next){
NODE &e=Edge[i];
if(!e.vis){
e.vis=1;
dfs(e.to);
}
}
ans[top++]=u;
}
int main()
{
//freopen("data.in","r",stdin);
//freopen("data.out","w",stdout);
int n,m,T;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
memset(head,-1,sizeof(head));tol=0;
memset(Head,-1,sizeof(Head));tot=0;
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
char op[10];
while(m--){
int u,v;
scanf("%d%d%s",&u,&v,op);
if(op[0]=='D')add(u,v);
else addedge(u,v,1);
out[u]++;in[v]++;
}
int flag=1,sum=0;
for(int i=1;i<=n;i++){
if((out[i]+in[i])%2){
flag=0;break;
}
if(out[i]>in[i])sum+=(out[i]-in[i])/2,addedge(0,i,(out[i]-in[i])/2);
else if(in[i]>out[i])addedge(i,n+1,(in[i]-out[i])/2);
}
if(!flag||sap(0,n+1,n+10)!=sum)puts("No euler circuit exist");
else{
top=0;
for(int i=1;i<=n;i++)
for(int j=head[i];j!=-1;j=edge[j].next){
int v=edge[j].to;
if(v>=1&&v<=n&&edge[j].cap>0)
add(i,v);
}
top=0;
dfs(1);
for (int i = top-1; i >= 0; i --) printf("%d%c",ans[i],i==0 ? '\n':' ');
}
if (T) puts("");
}
return 0;
}