Apache Flink中Watermark、Window、State三者的关系

本文探讨Apache Flink中的Watermark、Window和State的关系。Watermark是触发time window的时间依据,用于处理数据乱序问题;Window提供数据切分机制,与Watermark结合应对时间不一致;State则记录中间状态,对数据恢复至关重要。文中通过源码分析,解释了Window和Watermark基于key的工作原理,以及它们与State的关联。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

Watermark、Window和State是Apache Flink的三个高光名词,也是大家在实际应用中利器。

  • Watermark致力于解决数据的乱序和延迟问题;
  • Window尽心尽力提供各种数据切分机制;
  • State勤勤恳恳记录中间状态,并在数据恢复等场景承担着重要的角色。

这三个算得上是Flink的模范标兵。大家有想过三者之间的关系么,咱们从几个问题来探讨吧。

理想三问

  1. Watermark和Window的关系?
  2. Window和Watermark是基于key的么?
  3. Window和State的关系?

下文主要是从上面三个点予以说明。源码版本1.6.1

Watermark和Window的关系

这个问题,Flink初学者的一个必然思考。官网已经予以了非常详尽的解释,如果鸡蛋里挑骨头,那就是英文对广大底层劳动人民不够友好,说的不够直接。能用最简单的语言去说清楚么?尝试下:watermark是触发time window的时间依据。

具体来说,Window可以为流提供分段处理机制, Watermark则主要应对数据时间乱序问题。在实际应用中,数据源往往很多个且时钟无法严格同步,数据汇集过程中传输的距离和速度也必然不同,在上游多节点处理过程中的处理速度也有差异,这些因素使得event time的乱序基本是一个必然现象。 这样也可以理解Watermark对非time window类的操作没有什么意义。

下面代码是element处理过程中判断是否要触发窗口计算的逻辑,从中就可以看出Window和Watermark在代码层面的关联关系:

//From EventTimeTrigger.java
@Override
public TriggerResult onElement(Object element, long timestamp, TimeWindow window, TriggerContext ctx) throws Exception {
   
	if (window.maxTimestamp() <= ctx.getCurrentWatermark()) {
   
		// if the watermark is already past the window fire immediately
		// 触发窗口计算
		return TriggerResult.FIRE;
	} else {
   
		// 继续,不触发窗口计算
		ctx.registerEventTimeTimer(window.maxTimestamp());
		return TriggerResult.CONTINUE;
	}
}

Window和Watermark是基于key的么

为什么这个问题这么高频?举个场景:大家将同一类业务存储在同一个Kafka的Topic中,但是由于数据采集、传输的中间过程不同,可能会造成某些数据延迟较大,并不局限于某个partition,partition内的数据也有可能部分延迟较大。大家就会有疑问了࿰

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值