Windows上TensorRT部署记录入门

文章介绍了如何使用TensorRT优化GPU深度学习推理模型的过程,包括CUDA和cudnn的下载安装,确保版本匹配,以及环境变量的设置。通过将.pt模型转换为.trt模型,可以提高推理速度。作者提供了详细的步骤,包括下载CUDA和cudnn,添加环境变量,以及使用TensorRT的样例MNIST进行测试来验证安装配置是否成功。
摘要由CSDN通过智能技术生成

导语

TensorRT是英伟达的AI加速推理模型,我们在使用GPU深度学习训练完后,会生成.pt模型,但是这个模型在推理时不够快,这时候就需要转化成trt模型,使用c++利用TensorRT API编写程序进行快速推理。

一.CUDA下载安装

本人下载的版本是cuda11.6,cudnn8.4,正好对应上的,当然cuda版本要能支持你的GPU,cuda版本太高你的GPU跑不了,cuda版本太低也不好。

运行命令提示符cmd,输入图中指令查看自己显卡信息

如图所示,我的电脑显卡是3050ti,驱动版本是516.91,CUDA版本是11.7,对应关系如下图:

这里只提供一部分,更前的和随着40系显卡的出现,这张表肯定会落后,如图,我的显卡版本正好卡在11.7update1和11.8GA之间,我下了11.6update2版本。

CUDA下载官网:CUDA Toolkit Archive | NVIDIA Developer

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值