最长公共子序列LCS

给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的)。
比如两个串为:

abcicba
abdkscab

ab是两个串的子序列,abc也是,abca也是,其中abca是这两个字符串最长的子序列。
Input
第1行:字符串A
第2行:字符串B
(A,B的长度 <= 1000)
Output
输出最长的子序列,如果有多个,随意输出1个。
Input示例
abcicba
abdkscab
Output示例
abca

import java.util.Scanner;
public class Main {

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        String str1 = sc.next();
        String str2 = sc.next();
        int m = str1.length();
        int n = str2.length();
        int[][] dp = new int[m][n];
        int tmp = 0;
        Boolean flag = false;
        for(int i = 0;i < m;i++) {
            if(str1.charAt(i) == str2.charAt(0)) {
                //dp[i][0] = 1;
                tmp = i;
                flag = true;
                break;
            }
        }
        if(flag) {
        for(int i = tmp ;i < m;i++) {
            dp[i][0] = 1;
        }// 一旦包含一直包含(不连续) 第一列初始化完毕
        }
        tmp = 0;
        flag = false;
        for(int j = 1;j < n;j++) {
           if(str1.charAt(0) == str2.charAt(j))   {
              // dp[0][j] = 1;
               tmp = j;
               flag = true;
               break;
            }
         }
        if(flag) {
        for(int j = tmp ;j < n;j++) {
            dp[0][j] = 1;
        } //第一行初始化完毕
        }
        for(int i = 1;i < m;i++) {
            for(int j = 1;j < n;j++) {
                dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
                if(str1.charAt(i) == str2.charAt(j)) {
                    dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - 1] + 1);
                }
            }

        }  //生成 dp 数组
//for(int i = 0;i < m;i++) {
//      for(int j = 0;j < n;j++) {
//          System.out.print(dp[i][j]);
//      }
//      System.out.println();
//  }
//System.out.println(dp[m - 1][n - 1]);

        //根据决策 路径得到字符串
        String res = "";
        if(str1 == null || str2 == null || str1.equals("") || str2.equals("") ) {
            System.out.println(res);
        }
        char[] res1 = new char[dp[m - 1][n - 1]]; //返回字符串长度
        int p = m - 1;
        int q = n - 1;
        int index = res1.length - 1;
        while(index >= 0) {
            if(p > 0 && dp[p][q] == dp[p - 1][q]) {
                p--; //上移
            }else if(q > 0 && dp[p][q] == dp[p][q - 1]){
                q--;  //左移
            }else {
               res1[index--] = str1.charAt(p);
               p--;
               q--;  //左上移 长度减一
            }
        }

        res = String.valueOf(res1);
        System.out.println(res);


  }


}

经典dp题,生成dp数组后根据决策路径逆向得到字符串,希望以上做法对有疑惑的小伙伴能提供帮助。(51nod 1006 AC)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值