给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的)。
比如两个串为:
abcicba
abdkscab
ab是两个串的子序列,abc也是,abca也是,其中abca是这两个字符串最长的子序列。
Input
第1行:字符串A
第2行:字符串B
(A,B的长度 <= 1000)
Output
输出最长的子序列,如果有多个,随意输出1个。
Input示例
abcicba
abdkscab
Output示例
abca
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
String str1 = sc.next();
String str2 = sc.next();
int m = str1.length();
int n = str2.length();
int[][] dp = new int[m][n];
int tmp = 0;
Boolean flag = false;
for(int i = 0;i < m;i++) {
if(str1.charAt(i) == str2.charAt(0)) {
//dp[i][0] = 1;
tmp = i;
flag = true;
break;
}
}
if(flag) {
for(int i = tmp ;i < m;i++) {
dp[i][0] = 1;
}// 一旦包含一直包含(不连续) 第一列初始化完毕
}
tmp = 0;
flag = false;
for(int j = 1;j < n;j++) {
if(str1.charAt(0) == str2.charAt(j)) {
// dp[0][j] = 1;
tmp = j;
flag = true;
break;
}
}
if(flag) {
for(int j = tmp ;j < n;j++) {
dp[0][j] = 1;
} //第一行初始化完毕
}
for(int i = 1;i < m;i++) {
for(int j = 1;j < n;j++) {
dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
if(str1.charAt(i) == str2.charAt(j)) {
dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - 1] + 1);
}
}
} //生成 dp 数组
//for(int i = 0;i < m;i++) {
// for(int j = 0;j < n;j++) {
// System.out.print(dp[i][j]);
// }
// System.out.println();
// }
//System.out.println(dp[m - 1][n - 1]);
//根据决策 路径得到字符串
String res = "";
if(str1 == null || str2 == null || str1.equals("") || str2.equals("") ) {
System.out.println(res);
}
char[] res1 = new char[dp[m - 1][n - 1]]; //返回字符串长度
int p = m - 1;
int q = n - 1;
int index = res1.length - 1;
while(index >= 0) {
if(p > 0 && dp[p][q] == dp[p - 1][q]) {
p--; //上移
}else if(q > 0 && dp[p][q] == dp[p][q - 1]){
q--; //左移
}else {
res1[index--] = str1.charAt(p);
p--;
q--; //左上移 长度减一
}
}
res = String.valueOf(res1);
System.out.println(res);
}
}
经典dp题,生成dp数组后根据决策路径逆向得到字符串,希望以上做法对有疑惑的小伙伴能提供帮助。(51nod 1006 AC)