构建自己的哨兵数据集(以sentinel-1为例,使用SNAP软件)

一、获取哨兵数据

首先进入欧洲航空局网站,哨兵1号由两颗极轨卫星A星和B星组成。两颗卫星搭载的传感器为合成孔径雷达(SAR),属于主动微波遥感卫星。
1.点击“Open Hub”
Alt
2.点击右上角完成账户注册(这一步很简单)。
在这里插入图片描述
3.点击下图中“1”,选择要查找的区域(本文以西安为例),选择完成后,点击“2”来完成具体的数据选择。
产品类型中:
SLC(Single Look Complex):这些产品包含原始SAR数据的相位和振幅信息,通常用于制作高分辨率SAR图像,进行地质勘探和地震监测等应用。(博主因为要用于SAR图像训练,所以选择了该产品类型)
GRD(Ground Range Detected:这些产品包含了原始合成孔径雷达数据的地表反射率信息,可以用于监测土地覆盖和变化,如农田、森林和城市。
OCN(Ocean):主要用于监测和研究地球的海洋环境,提供了关于海洋表面特征和动态的有用信息。
RAW属于为加工的原始SAR数据,加工后得到SLC、GRD、OCN。
传感器模式选项:
Stripmap(SM)模式: Stripmap模式提供了中等分辨率的SAR图像,适用于地质、环境和农业监测等应用。
Interferometric Wide (IW) 模式: IW模式具有较高的分辨率,适用于地表变形监测、森林监测和海洋应用。
Extra Wide (EW) 模式: EW模式提供更宽的覆盖范围,适用于大范围地表监测,如洪水监测和农业用途。

在这里插入图片描述
该图的极化模式需要改为VV+VH
4.设置完毕后,点击搜索按钮,并选择一款产品加入购物车(为了防止下一次找不到),再点击下载按钮。得到的是一个非常大的压缩包。
在这里插入图片描述

二、处理哨兵计划产品数据

1.下载SNAP软件进行哨兵数据的处理,进入下载官网,选择版本。
2.打开软件,点击“File”,再点击“Open Product…”,选择刚刚下载的安装包,在“Bands”中就可以查看图像了(西安古城墙清晰可见23333)
至此,数据的获取就完成了,后续就可以进行其他专业处理了,本人后面只介绍如何导出成图片,以及分割图片
在这里插入图片描述
在这里插入图片描述

三、导出图片格式并切割图片

1.导出图片,点击“File”–>“Export”–>“Other”–>“View as image”,接下来在图片右侧窗口进行分辨率的选择。
在这里插入图片描述
在这里插入图片描述
2.切割图片。(因为本人需要训练网络,所以要分辨率较小的图片),这里本人使用python写了一个简单的脚本,使用到了PIL的Image库。

def batch_crop(input_dir, crop_size=128):
    # input_dir 传入的照片路径
    # crop_size 所截取图片的大小
    # dirs = os.listdir(input_dir)    # 保存input_dir目录下所有文件至dirs
    # for item in dirs:
    im = Image.open(input_dir)
    print("图像尺寸(宽,高): ", im.size)
    (width, height) = im.size
    stepping = 32              # 设置步进大小,每隔32个像素点,截取一次
    right_times = (width - crop_size) // stepping
    down_times = (height - crop_size) // stepping
    print("右移次数:", right_times)
    print("下移次数:", down_times)
    # left, top = 0, 0
    number = 0
    for i in range(right_times + 1):
        for j in range(down_times + 1):
            if i == right_times:
                left = width - crop_size	#此时顶格裁切
            else:
                left = stepping * i
            if j == down_times:
                top = height - crop_size
            else:
                top = stepping * j
            im_crop = im.crop((left, top, left + crop_size, top + crop_size))
            # 输入保存地址
            im_crop.save(f'./xiAn_datasets/Amplitude-VV/{i}_{j}.png')
            number += 1
    print(number)
### 回答1: Snap软件是一种非常流行的遥感数据处理软件,可用于处理Sentinel-1卫星成像数据。对于SLC数据Snap软件提供了多种处理方法,包括预处理和后处理。预处理功能包括校正、噪声过滤、辐射定标和地球坐标系转换等。这些预处理功能可以帮助用户处理数据,并准确显示每个区域的地形和表面特征。 Snap软件还可以用于处理Sentinel-1影像数据的SLC数据的后处理,包括干涉测量、形变分析、地貌学分析等。这些功能可以帮助用户提取地表物理现象的空间分布和时间变化信息。 Snap软件还具有优化处理能力的能力,可以使用图像处理方法提高数据质量,消除噪声和其他成像问题。此外,Snap软件还可以根据用户的需求进行可视化处理,以准确而直观的方式显示影像数据。 总而言之,Snap软件是一种非常强大且使用方便的工具,可用于处理Sentinel-1影像数据的SLC数据使用Snap软件进行数据处理和后处理,将有助于用户更好地分析和理解卫星遥感数据。 ### 回答2: Snap 软件是一款专为雷达影像数据处理设计的软件,对 Sentinel-1 SLC 数据进行分析处理时具有很高的效率和精度。 首先,Snap 软件能够直接读取 Sentinel-1 SLC 数据,方便用户进行数据的导入和管理。 其次,Snap 软件支持对 Sentinel-1 SLC 数据进行一系列的处理,如数据预处理、辐射校正、滤波处理、图像复合等,能够有效地减小噪声、增强信号,并对目标进行识别和提取。 再次,Snap 软件支持数据可视化和分析,用户可以通过软件中的多种工具进行数据可视化、分析和导出,帮助用户更好地理解和利用 Sentinel-1 SLC 数据。 最后,Snap 软件还支持 Sentinel-1 数据与其他遥感数据进行融合,如多光谱数据、高分辨率卫星影像等,能够进一步提升数据的分辨率和精度,满足用户不同的需求。 总之,Snap 软件Sentinel-1 SLC 数据的处理能力非常强大,能够大大提升用户对雷达数据的处理和分析效率和精度,是一款非常实用的遥感数据处理软件。 ### 回答3: Snap软件是一种专业的遥感图像分析处理软件,可以用来处理不同类型的遥感影像数据,包括Sentinel-1的SLC数据Sentinel-1是欧空局推出的一颗合成孔径雷达卫星,可获取高分辨率的雷达图像,可以用于监测海洋、陆地和冰盖等地球表面的变化。 Snap软件Sentinel-1的SLC数据进行处理时,可以进行多种操作,包括数据预处理、数据分析、信息提取和图像处理。其中,数据预处理包括干涉处理、解直流、滤波和去斑等操作,可以有效减少数据噪声和干扰。数据分析方面,Snap软件可以进行目标检测、分类和特征提取等操作,可以针对不同的应用场景进行数据分析,如海洋、土地利用和资源管理等。信息提取方面,Snap软件可以进行船舶检测、海冰监测和油污检测等操作。图像处理方面,Snap软件可以进行图像拼接、图像匹配和变换等操作,可以生成高分辨率的遥感影像产品。 总之,Snap软件是一种功能强大且易于使用的遥感影像处理软件,可以对Sentinel-1的SLC数据进行多方面的处理和分析,为用户提供高质量的遥感影像产品。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值