琐碎的知识点

1、Python assert的使用
断言,使用assert关键字后面接一个条件表达式

  • 如果条件表达式为真,意味着程序的当前条件与开发人员的自己断言的情况一样,则程序继续运行
  • 如果为假,则表明一定在前面发生了错误,则程序停止运行,抛出异常
    例:
assert 1!=1  #断言1不能于1

2、tensorflow由于版本问题出现的错误
问题:TypeError: Value passed to parameter ‘shape’ has DataType float32 not in list of allowed values: int32, int64
解决方案:根据控制台的提示,找到shape这个方法进行数据类型转换。np.int(…)
问题:ValueError: Only call softmax_cross_entropy_with_logits with named arguments (labels=…, logits=…, …)

解决方法:按照提示,需要将括号内的形参写出,即logits=outputs, labels=targets而非(outputs,targets)
3、np.newaxis

x1 = np.array([1, 2, 3, 4, 5])
print(x1)
# the shape of x1 is (5,)
x1_new = x1[:, np.newaxis]
print(x1_new)
# now, the shape of x1_new is (5, 1)
# 		[[1],
#        [2],
#        [3],
#        [4],
#        [5]]
x1_new = x1[np.newaxis,:]
print(x1_new)
# now, the shape of x1_new is (1, 5)
# [[1, 2, 3, 4, 5]]

3、tf.argmax()
tf.argmax(input,axis)返回每行或者每列的最大值的索引(位置),其中,axis=0表示比较每一列的元素,返回每一列的元素的最大值索引:

import tensorflow as tf
test = np.array([[1, 2, 5], [2, 5, 4], [5, 4, 3], [8, 7, 2]])
print(test)
print("-----")
with tf.Session():
    print(tf.argmax(test,1).eval())

test
位置索引

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值