树莓派实现目标实时检测opencv-Moblenet

57 篇文章 ¥19.90 ¥99.00
33 篇文章 ¥29.90 ¥99.00
本文介绍了如何在OpenCV3.3及以上版本中利用DNN模块进行图像处理。通过加载Caffe模型数据,如bvlc_googlenet.caffemodel和bvlc_googlenet.prototxt,可以实现图像分类和对象检测。特别是,文章以OpenCV3.3和MobileNet为例,展示在树莓派上进行实时目标检测的步骤,涉及Android/iOS移动端平台的支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、opencv3.3以上版本安装

忽略,见博客

效果图
这里写图片描述
在OpenCV3.3版本发布中把DNN模块从扩展模块移到了OpenCV正式发布模块中,当前DNN模块最早来自Tiny-dnn,可以加载预先训练好的Caffe模型数据,OpenCV做了近一步扩展支持所有主流的深度学习框架训练生成与导出模型数据加载,常见的有如下:
Caffe
TensorFlow
Torch/PyTorch
OpenCV中DNN模块已经支持与测试过这些常见的网络模块
AlexNet
GoogLeNet v1 (also referred to as Inception-5h)
ResNet-34/50/…
SqueezeNet v1.1
VGG-based FCN (semantical segmentation network)
ENet (lightweight semantical segmentation network)
VGG-based SSD (object detection network)
MobileNet-based SSD (light-weight object detection network)
一&

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiao__run

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值