51Nod 1405 - 树的距离之和(树DP)

在这里插入图片描述
【思路】
假设节点标号从0开始且0为树根,设 num[u]num[u] 表示记录包含 uu 在内 uu 的子节点个数, dist[u]dist[u] 记录 uu 的所有子节点到 uu 的距离之和, dp[u]dp[u] 记录最终答案,先计算所有的 num[u]num[u]dist[u]dist[u]
num[u]=1+num[v]    vu num[u]=1+\sum num[v] \ \ | \ \ v是u的子节点 dist[u]=dist[v]+num[v]    vudist[u]=\sum dist[v]+num[v] \ \ | \ \ v是u的子节点 可以通过一次dfs计算出来,此时的 dist[0]=dp[0]dist[0]=dp[0] 就是答案,然后从根节点往下推 dp[v]=dp[u](num[v])+(nnum[v])=dp[u]+n2×num[v]    vudp[v]=dp[u]-(num[v])+(n-num[v])=dp[u]+n-2×num[v] \ \ | \ \ v是u的子节点
减去 num[v]num[v] 是因为 vv 以及它的所有子节点到 vv 的距离比到 uu 的距离少1,同理减去 nnum[v]n-num[v] 是因为剩余节点到 vv 的距离比到 uu 的距离多1

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=100005;

int n,rt,tot;
int head[maxn];
ll dist[maxn],num[maxn];
ll dp[maxn];
//num[u]记录包含u在内u的子节点个数,dist[u]记录u的所有子节点到u的距离之和

struct Edge{
    int to,next;
}e[maxn<<1];

void add(int u,int v){
    e[tot].to=v;
    e[tot].next=head[u];
    head[u]=tot++;
}

void dfs(int u,int fa){
    num[u]=1;
    dist[u]=0;
    for(int i=head[u];i!=-1;i=e[i].next){
        int v=e[i].to;
        if(v!=fa){
            dfs(v,u);
            num[u]+=num[v];
            dist[u]+=dist[v]+num[v];
        }
    }
}

void calc(int u,int fa){
    for(int i=head[u];i!=-1;i=e[i].next){
        int v=e[i].to;
        if(v!=fa){
            dp[v]=dp[u]+n-2*num[v];
            calc(v,u);
        }
    }
}

int main(){
    memset(head,-1,sizeof(head));
    scanf("%d",&n);
    for(int i=0;i<n-1;++i){
        int u,v;
        scanf("%d%d",&u,&v);
        --u;--v;
        add(u,v);
        add(v,u);
    }
    dfs(0,-1);
    dp[0]=dist[0];
    calc(0,-1);
    for(int i=0;i<n;++i) printf("%lld\n",dp[i]);
    return 0;
}

发布了340 篇原创文章 · 获赞 22 · 访问量 4万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 精致技术 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览