DeeplearningPart3

本文深入浅出地介绍了神经网络的基本概念,包括输入层、隐藏层和输出层的作用及参数设置。详细探讨了线性与非线性函数在神经网络中的应用,并解释了为何在隐藏层通常采用非线性激活函数,而在输出层则使用线性函数。此外,还讨论了不同类型的激活函数及其优缺点,例如ReLU及其变种。
摘要由CSDN通过智能技术生成

3.1 神经网络

  • 层的概念[1]/[2]
  • 输入层/隐藏层/输出层(只有一个值)
  • 隐藏层和输出层带有参数(绿色)
  • 上图是只有一个隐藏层的神经网络(双层神经网络,输入层为第零层)
  • 最关键的几步:


  • 精华!


3.2 神经网络中的线性函数与非线性函数

  • 线性函数只能用于简单的拟合图形中
  • 非线性函数作为激活函数能拟合更为复杂多样的图形
  • 一般在输出层使用线性函数,而在隐藏层使用非线性函数


(几个常用的非线性激活函数)


  • 使用tan而不是西格玛函数:数据平均值为0而不是0.5,有类似数据中心化的效果。并使下一层的学习更简单一点
  • 基本不太会用西格玛函数,二元函数且在输出层 v时例外
  • 当上述常用激活函数图中的z较大或是较小时,导数的梯度(或者说函数的斜率)就可能会很小(接近0),从而影响梯度下降的效率;一般在隐层中会使用修正线性单元RELU,这也是默认的使用于隐藏层的激活函数
  • 带泄漏的RELU:z为负值的时候平缓的趋于0

3.3 梯度下降算法

  • n[0]:输入特征/n[1]:隐藏层/n[2]:输出层
  • n[2]=1时,矩阵w[1]维度就是(n[1],n[0]),b[1]就是n[1]列向量,可写成(n[1],1),b[2]就是n[2]列向量,可写成(n[2],1)



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值