机器学习---数学基础(一、微积分)精华版

本文概述了高等数学中的核心概念,包括极限的定义及其应用,微分的几何意义和导数计算,泰勒级数的展开与应用,以及牛顿法在求解优化问题中的使用。讨论了无穷小阶数和等价无穷小在求解极限中的作用,并介绍了积分的几何和代数定义。同时,提到了牛顿法的局限性和实施步骤,强调其在机器学习中寻找损失函数最小值的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、极限

1.1 极限的定义

  • 极限定义的记忆方式:想要任意近,就要足够近。

在这里插入图片描述
{ 对 于 任 意 的 正 数 ϵ , 若 使 得 ∣ f ( x ) − L ∣ < ϵ ; 则 存 在 δ , 使 得 ∣ x − x 0 ∣ < δ \begin{cases} 对于任意的正数 \epsilon, \\ 若使得 |f(x) - L| < \epsilon; \\ 则存在\delta,使得|x-x_0| < \delta \end{cases} ϵ,使f(x)L<ϵ;δ,使xx0<δ

  • 极限的数学符号:
    在这里插入图片描述

1.2 无穷小阶数

  • 趋近无穷小的速度越快,阶数越大
    趋近··················越慢,······越小
    在这里插入图片描述

1.2.1 等价无穷小代还求极限

在这里插入图片描述

2、微分与泰勒级数

2.1 微分

2.1.1 导数

  • 几何定义:函数的切线。
    在这里插入图片描述

2.1.2 求导法则

在这里插入图片描述

2.2 泰勒级数

在这里插入图片描述

3、积分与微积分基本定理

在这里插入图片描述

  • 几何定义:函数与 X X X轴之间的有向面积。
  • 代数定义:无穷求和。

在这里插入图片描述

4、牛顿法

  • 对于机器学习或统计算法的最后都会转换成一个优化的问题。
    也就是:求某一个损失函数的极小值。
    在这里插入图片描述

1)注意事项(局限性)

在这里插入图片描述

2)具体做法

  • 本质是:二次逼近
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值