文章目录
- 本篇博客是高等数学的精华版本;
- 若是想看详细的数学内容,请转到下面地址机器学习—数学基础(一、微积分)
1、极限
1.1 极限的定义
- 极限定义的记忆方式:想要任意近,就要足够近。
{
对
于
任
意
的
正
数
ϵ
,
若
使
得
∣
f
(
x
)
−
L
∣
<
ϵ
;
则
存
在
δ
,
使
得
∣
x
−
x
0
∣
<
δ
\begin{cases} 对于任意的正数 \epsilon, \\ 若使得 |f(x) - L| < \epsilon; \\ 则存在\delta,使得|x-x_0| < \delta \end{cases}
⎩⎪⎨⎪⎧对于任意的正数ϵ,若使得∣f(x)−L∣<ϵ;则存在δ,使得∣x−x0∣<δ
- 极限的数学符号:
1.2 无穷小阶数
- 趋近无穷小的速度越快,阶数越大
趋近··················越慢,······越小
1.2.1 等价无穷小代还求极限
2、微分与泰勒级数
2.1 微分
2.1.1 导数
- 几何定义:函数的切线。
2.1.2 求导法则
2.2 泰勒级数
3、积分与微积分基本定理
- 几何定义:函数与 X X X轴之间的有向面积。
- 代数定义:无穷求和。
4、牛顿法
- 对于机器学习或统计算法的最后都会转换成一个优化的问题。
也就是:求某一个损失函数的极小值。
1)注意事项(局限性)
2)具体做法
- 本质是:二次逼近