凸包模版

#include <cstdio>
#include <cmath>
#include <vector>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
const double PI = acos(-1.0);
const double eps = 1e-10;
//    定义点
struct Point
{
    double x, y;
    Point(double x = 0, double y = 0) : x(x), y(y) {}    //构造函数,方便代码编写
};
//
typedef Point Vector;       //向量是点的一个别名
//重载 +, -, *, /, <, == 运算符
Vector operator + (Vector A, Vector B)    //“+”运算符,向量+向量=向量
{
    return Vector(A.x + B.x, A.y + B.y);
}
Vector operator - (Point A, Point B)        //“-”运算符,点-点=向量
{
    return Vector(A.x - B.x, A.y - B.y);
}
Vector operator * (Vector A, double p)      //“*”运算符,向量*数=向量
{
    return Vector(A.x * p, A.y * p);
}
Vector operator / (Vector A, double p)     //“/”运算符,向量/数=向量
{
    return Vector(A.x / p, A.y / p);
}
bool operator < (const Point& a, const Point& b)    //“<”运算符
{
    return a.x < b.x || (a.x == b.x && a.y > b.y);
}
//叉积,两向量组成的三角形的有向面积的两倍
double Cross(Vector A, Vector B)
{
    return A.x * B.y - A.y * B.x;
}
//计算凸包,输入点数组p,个数为n,输出点数组ch,函数返回凸包顶点数。
//输入不能有重复点,函数执行完后输入的点的顺序被破坏
//如果不希望在凸包的边上有输入点,把两个<=改成<
//在精度要求高时建议用dcmp比较
int ConvexHull(Point* p , int n, Point* ch)
{
    sort(p, p + n);        //先比较x坐标,再比较y坐标
    int m = 0;
    for (int i = 0; i < n; i++) {
        while (m > 1 && Cross(ch[m - 1] - ch[m - 2], p[i] - ch[m - 2]) <= 0) m--;
        ch[m++] = p[i];
    }
    int k = m;
    for (int i = n - 2; i >= 0; i--) {
        while (m > k && Cross(ch[m - 1] - ch[m - 2], p[i] - ch[m - 1]) <= 0) m--;
        ch[m++] = p[i];
    }
    if (n > 1) m--;
    return m;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值