算法之路-------贪心算法

本文介绍了贪心算法的基本思想、算法过程及其存在的问题。贪心算法每次选择局部最优解,试图通过子问题的最优解来求得原问题的最优解。然而,这种方法并不保证能得到全局最优解。文中举例说明了贪心算法在买股票最佳时机问题和跳跃游戏中如何应用,阐述了如何通过贪心策略找到问题的可行解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法思想

贪心算法,顾名思义做到贪心那就要让算法实现的每一步都是最好的一步。

  • 贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。
  • 贪心选择是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素。
  • 当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。运用贪心策略在每一次转化时都取得了最优解。问题的最优子结构性质是该问题可用贪心算法求解的关键特征。贪心算法的每一次操作都对结果产生直接影响。贪心算法对每个子问题的解决方案都做出选择,不能回退。
  • 贪心算法的基本思路是从问题的某一个初始解出发一步一步地进行,根据某个优化测度,每一步都要确保能获得局部最优解。每一步只考虑一个数据,他的选取应该满足局部优化的条件。若下一个数据和部分最优解连在一起不再是可行解时,就不把该数据添加到部分解中,直到把所有数据枚举完,或者不能再添加算法停止。
  • 实际上,贪心算法适用的情况很少。一般对一个问题分析是否适用于贪心算法,可以先选择该问题下的几个实际数据进行分析,就可以做出判断。

所以,贪心算法其实就是将整个算法分为很多子算法,而贪心算法就是分成的那些子算法全部最优的解的集合。

算法的过程及存在的问题

1.算法的过程

  1. 建立数学模型来描述问题。
  2. 把求解的问题分成若干个子问题。
  3. 对每一子问题求解,得到子问题的局部最优解。
  4. 把子问题的局部最优解合成原来解问题的一个解。

其实也就是即假设一个问题比较复杂,暂时找不到全局最优解,那么我们可以考虑把原问题拆成几个小问题(分而治之思想),分别求每个小问题的最优解,再把这些“局部最优解”叠起来,就“当作”整个问题的最优解了。

2.算法存在的问题

  • 不能保证求得的最后解是最佳的。
  • 不能用来求最大值或最小值的问题。
  • 只能求满足某些约束条件的可行解的范围。

经典例题

1.买股票的最佳时机Ⅱ(取自力扣)
在这里插入图片描述
解法:
①:对于这道题的解法,我们肯定是要有贪心的思想,也就是应该是在股票价格最低的时候我们把它买了,然后在股票价格最高的时候把他卖了,然后依次如此。

②:因为股票的价格是起伏的,所以我们找到最低点买入,最高点卖出,而我们可以通

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值