Google Professional Data Engineer(PDE)考试

本文作者分享了参加Google Professional Data Engineer(PDE)考试的经历,包括备考过程、考试重点和产品理解。内容涵盖Cloud SQL、BigTable、BigQuery、Dataproc、dataflow等Google云产品,强调了将自己定位为解决方案工程师,寻找最适合的案例解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

image.png

在国内参加PDE考试的人比较少,导致资料也很少。我在19年1月30号去上海参加PDE考试,参加前也是完全没底,因为时间短资料少,但幸运的是顺利通过了。回过头来看,其中有些技巧和重点,在此做一些总结,希望可以给参加PDE考试的同学提供一些帮助。

收获

1)对云有新的认识
2)对大数据架构、机器学习架构设计有新的认识
3)当然最重要的是获得google官方发的证书

说说我的准备

1)花了5周的时间看完google官方提供的视频,几乎是完全脱产(只做一些事故处理)。
2)试做官方提供example,一共20道题,我错了五道。我错的主要是安全和BigTable相关的。
3)google的同学建议是看concept的相关内容,但离考试也就剩三四天了,不可能详细复习,concept是一定看不完的。那么就针对没有掌握的知识进行复习,安全相关的官方视频是没有涉及的,所以必须自己找资料看,别的资料也没有,就只能看concept中涉及安全的方便,这个比较少,最多一天就全部看完。BigTable看来我也是掌握不好,那么我就看BigTable的concept知识。
4)看完上面的就参加考试了,也再没做特别复习。

### 数据处理与偏微分方程相关操作 在数据处理领域,双边滤波器是一种常见的技术,其主要特点是能够在平滑信号的同时保留边缘信息。不同于以往的研究方法,当前的工作将双边滤波器置于信号处理框架下进行分析,并证明了大部分计算可以由线性运算完成,而非线性部分则集中在最后一步实现[^1]。 在医学影像建模方面,《Visible Human Project》以及《ETDIPS: clinical image processing》等项目展示了如何利用先进的图像处理技术和偏微分方程(PDEs)来改善临床诊断的质量和效率[^2]。这些模型不仅涉及复杂的数学推导,还依赖于高性能的数据处理能力。 关于性能评估的标准问题,在某些情况下,为了使不同实验之间的结果具有可比性,需要引入标准化的比例参数调整机制。例如,通过对多个轮廓检测器的结果进行对比分析发现,许多常用的性能指标实际上会随着尺度参数的变化而变化。研究表明,这类指标往往呈现出与对数函数类似的增减趋势[^3]。这一结论有助于研究人员更好地理解并校正因尺度差异带来的偏差。 至于无限神经网络及其衍生概念如高斯过程、神经切线核等相关理论,则更多地应用于机器学习领域内的优化求解过程中。借助Python库JAX的支持,开发者能够高效构建基于此类原理的软件工具链[^4]。 ```python import jax.numpy as np from jax import grad, jit def neural_network(params, inputs): for w, b in params: outputs = np.dot(inputs, w) + b inputs = np.tanh(outputs) return outputs @jit def loss_fn(params, batch): inputs, targets = batch predictions = neural_network(params, inputs) return np.sum((predictions - targets)**2) grad_loss = grad(loss_fn) ``` 以上代码片段展示了一个简单的前馈神经网络定义及其对应的损失函数梯度计算逻辑。 ####
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值