Description
大家一定觉的运动以后喝可乐是一件很惬意的事情,但是seeyou却不这么认为。因为每次当seeyou买了可乐以后,阿牛就要求和seeyou一起分享这一瓶可乐,而且一定要喝的和seeyou一样多。但seeyou的手中只有两个杯子,它们的容量分别是N 毫升和M 毫升 可乐的体积为S (S<101)毫升 (正好装满一瓶) ,它们三个之间可以相互倒可乐 (都是没有刻度的,且 S==N+M,101>S>0,N>0,M>0) 。聪明的ACMER你们说他们能平分吗?如果能请输出倒可乐的最少的次数,如果不能输出"NO"。
Input
三个整数 : S 可乐的体积 , N 和 M是两个杯子的容量,以"0 0 0"结束。
Output
如果能平分的话请输出最少要倒的次数,否则输出"NO"。
Sample Input
7 4 3
4 1 3
0 0 0
Sample Output
NO
3
这个题一看看去就是一个数学题,核心就是求不定方程的最小整数解(当然是正的),其中不定方程判断是否有整数解是最重要的,这里是高中数竞的一点小知识:对于一阶不定方程,ax+by=c 有整数解的充要条件是(a,b) | c,若x0,y0是一组特解,那么通解x = x0 + t * b / (a,b),y = y0 - t * a / (a,b)。
对于这个题,就是经过若干次,得到了 S / 2体积的可乐,所以设两个容器分别倒入或倒出了x,y次,就有Mx + Ny = S,我们要得出的是 |x|+|y| 的最小值,有两点值得注意,第一点就是得出这个最小值并不是答案,因为我们对于小杯子的倒入和倒出都是利用了大瓶子(感觉类似于汉诺塔),所以对这个最小值要乘以2。第二点就是最后的情况,最后得到两杯 S / 2 的可乐时,必定有一杯是瓶子装的,一杯是杯子中容积较大的装的,所以,倒出的操作次数要减一。即最终答案应该是 min{|x| + |y|} * 2 - 1。
代码:
#include <cstdio>
#include <iostream>
using namespace std;
int gcd(int a, int b)
{
return b ? gcd(b, a % b) : a;
}
int main()
{
int s, n, m;
while(~scanf("%d%d%d",&s, &n, &m) && s + n + m)
{
if(s % (2 * gcd(m, n)) != 0)//这里判断是否有整数解
printf("NO\n");
else
printf("%d\n",(m + n) / gcd(m,n) - 1);//这里是手算的计算结果
}
return 0;
}
这个题的普遍解法应该是广搜,不过我广搜写的很差,几乎可以说是不会,才用的纯数学的办法,两个方法各有好处,看个人取舍。