Kruskal 算法是一个求最小生成树的算法,即求最小的开销等
测试例子:
结果:
算法可以这样,要求得最小生成树,那么n个节点只能包括n-1条边
所以我们应该转换为寻找这最短的n-1条边,因此,可以先对所有的
边进行从小到大排序,每次取出一条边来进行试探,看是否够成环,
如果不构成环,那么肯定是最短的路径了,因为每次都是取最小的边来试探,最终可以求得最小的生成树代价和。
/*
Filename:kruskal.cpp
Author: xiaobing
E-mail: xiaobingzhang29@gmail.com
Date: 2013-08-31
*/
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
#include<cstdlib>
#include<list>
#include<set>
#include<vector>
#define N 100
#define INF 1000000
using namespace std;
/*
Kruskal 算法是一个求最小生成树的算法,即求最小的开销等
算法可以这样,要求得最小生成树,那么n个节点只能包括n-1条边
所以我们应该转换为寻找这最短的n-1条边,因此,可以先对所有的
边进行从小到大排序,每次取出一条边来进行试探,看是否够成环,
如果不构成环,那么肯定是最短的路径了,因为每次都是取最小
的边来试探,最终可以求得最小的生成树代价和。
用到的数据结构:
struct edge 表示一条边,包括两个端点及其代价
edge graph[N] 表示有N条边组成的图
int father[N] 表示每个点的最上层的根节点
解释:因为这里需要判断是否形成环路,可以这样,每添加一条
边,看两个点是否在已经添加进去的边的点集中,若对需要添加
的这条边,发现两个点都在之前的那个集合中,这一定会形成回
路,所以,这里设置一个数组father[N],起初时,每个值为-1,代
表每个点的根节点都没有(因为没有添加一条边进去),当添加一条
边后,如果他们的根节点不同,则设置大的那个点的父节点为小
的那个点,如x > y 则 father[x] = y,这样每个点都只有一个根,
或者没有根,为-1,所以对添加进的节点,都可以查出他的根,然后
做比较,都相同,说明已位于添加进的节点中了,否则把该边添加
进去。
*/
//定义一条边
struct edge{
int u; //起始点
int v; //目的点
int cost; //两点之间的代价
};
//这是一个对块数排序算法调用的一个比较函数
bool cmp(const edge &a, const edge &b){
return a.cost < b.cost;
}
//查找一个节点的根节点
int findFather(int father[], int x){
//如果他的父节点不为-1,则应该递归,直到找到其父节点
if(father[x] != -1){
//将沿途的所有节点都指向同一个根节点
return father[x] = findFather(father, father[x]);
}
//若为-1,则该点就是根
return x;
}
//添加一条边
bool unionEdge(int father[], int x, int y){
//找到一条边的两个端点的根节点
x = findFather(father, x);
y = findFather(father, y);
//根节点相同,说明已经加入了,再加入该边
//则会形成回路,该边舍弃,返回fasle
if(x == y){
return false;
}
//若不同,让大的节点的根节点指向小的节点
if(x > y) father[x] = y;
if(x < y) father[y] = x;
//该边可以加入,返回true
return true;
}
int main(){
edge graph[N]; //定义了一个包含N条边的图
int father[N]; //定义了一个包含N个节点的根节点
int i,j, n; //n代表节点数
cin>>n;
//初始化数组
memset(graph, 0, sizeof(graph));
//初始化为-1表示任何点都没有父节点,即没有一条边已加入
memset(father, -1, sizeof(father));
int k = 0, cost, temp;
//接收数据
for(i = 0;i < n;i++)
for(j = 0;j < n;j++){
if(i > j){
graph[k].u = i;
graph[k].v = j;
cin>>cost;
//对于小于0的值,表示不可达,所以代价为无穷大INF
if(cost < 0){
graph[k].cost = INF;
} else {
graph[k].cost = cost;
}
k++;
continue;
}
//由于是对称的,该值无用,但得接收
cin>>temp;
}
//将所有边从小到大排序
sort(graph, graph + k, cmp);
//打印排序后的边
for(i = 0;i < k;i++){
cout<<i<<" "<<graph[i].u<<"->"<<graph[i].v<<": "<<graph[i].cost<<endl;
}
//count为记录已经加入的边数,到n-1时截止
//sum为最小生成树的代价和
int count = 0, sum = 0;
//从小到大遍历k条边
for(i = 0; i < k;i++){
//探测该边是否可加入
if(unionEdge(father, graph[i].u, graph[i].v)){
count++;
sum += graph[i].cost;
}
//当加入n-1条边时,已满足连通图,则退出
if(count == n - 1) break;
}
cout<<"最小生成树代价和sum : "<<sum<<endl;
return 0;
}
测试例子:
7
0 5 -1 -1 -1 11 2
5 0 10 8 -1 -1 13
-1 10 0 7 -1 -1 -1
-1 8 7 0 12 9 4
-1 -1 -1 12 0 10 -1
11 -1 -1 9 10 0 3
2 13 -1 4 -1 3 0
结果:
0 6->0: 2
1 6->5: 3
2 6->3: 4
3 1->0: 5
4 3->2: 7
5 3->1: 8
6 5->3: 9
7 2->1: 10
8 5->4: 10
9 5->0: 11
10 4->3: 12
11 6->1: 13
12 2->0: 1000000
13 6->4: 1000000
14 6->2: 1000000
15 3->0: 1000000
16 5->2: 1000000
17 5->1: 1000000
18 4->2: 1000000
19 4->1: 1000000
20 4->0: 1000000
最小生成树代价和sum : 31