图论:Kruskal算法、对偶图、最大流最小割

本文是数学建模系列关于图论的探讨,详细介绍了Kruskal算法的边选择策略,避免形成环路;对偶图的概念,并通过三角剖分和染色来简化问题;以及最大流最小割问题的基本思想。
摘要由CSDN通过智能技术生成

在这里插入图片描述

数学建模系列之图论方法——Kruskal算法、对偶图、最大流最小割

Kruskal算法

(https://img-blog.csdnimg.cn/20200707234429858.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzIwNTM4MDcx,size_16,color_FFFFFF,t_70)
从最小边开始选取,不允许成圈,即可。

对偶图

在这里插入图片描述
三角刨分+染色在这里插入图片描述
通过将区域三角刨分,再转换为 染色问题, 来实现 。 只需要三分之一就可以了。

最大流最小割

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值