复高斯分布

前言

本文主要介绍与高斯分布相关的一些通信中用的比较多的分布以及具体含义。

高斯分布及其相关分布

标准高斯随机变量其均值为0,方差为1,并具有如下概率密度函数(PDF):
f ( w ) = 1 2 π exp ⁡ ( − w 2 2 ) , w ∈ ℜ f(w)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{w^{2}}{2}\right), \quad w \in \Re f(w)=2π 1exp(2w2),w
记为 w ∼ N ( 0 , 1 ) w \sim N \left(0, 1\right) wN(0,1)
一个均值为 μ \mu μ,方差为 σ \sigma σ 高斯随机变量 x x x 取实数值,并具有如下概率密度函数 (PDF):
f ( x ) = 1 2 π σ 2 exp ⁡ ( − ( w − μ ) 2 2 σ 2 ) , w ∈ ℜ f(x)=\frac{1}{\sqrt{2 \pi\sigma^2}} \exp \left(-\frac{(w-\mu)^{2}}{2\sigma^2}\right), \quad w \in \Re f(x)=2πσ2 1exp(2σ2(wμ)2),w
x = σ w + μ x= \sigma w+\mu x=σw+μ 记为 x ∼ N ( μ , σ 2 ) x \sim N \left(\mu, \sigma^{2}\right) xN(μ,σ2)

  • 重要性质 1:独立的高斯分布其线性组合仍为高斯分布。

标准高斯分布的随机向量 w \bm{w} w 是包含了n个独立服从标准分布的随机变量,具有如下概率密度函数 (PDF):
f ( w ) = 1 ( 2 π ) n exp ⁡ ( − ∥ w ∥ 2 2 ) , w ∈ ℜ n f(\bm{w})=\frac{1}{(\sqrt{2 \pi})^{n}} \exp \left(-\frac{\|\bm{w}\|^{2}}{2}\right), \quad \bm{w} \in \Re^{n} f(w)=(2π )n1exp(2w2),wn
其中 ∥ w ∥ : = ∑ i = 1 n w i 2 \|\bm{w}\|:=\sqrt{\sum_{i=1}^{n} w_{i}^{2}} w:=i=1nwi2

  • 重要性质 2:正交变换的标准高斯随机向量也就标准高斯随机向量

对于一般高斯随机向量,即相当于每一个分量都是其他所有分量的线性组合加一个常数:
x = A w + μ \bm{x}=\mathbf{A} \bm{w}+\bm{\mu} x=Aw+μ

  • 对于任意 c \bm{c} c,有:
    c t x ∼ N ( c t μ , c t A A t c ) \bm{c}^{t} \bm{x} \sim \bm{N}\left(\bm{c}^{t} \bm{\mu}, \bm{c}^{t} \bm{A} \bm{A}^{t} \bm{c}\right) ctxN(ctμ,ctAAtc)
  • 如果 A \bm{A} A可逆,则有:
    f ( x ) = 1 ( 2 π ) n det ⁡ ( A A t ) exp ⁡ ( − 1 2 ( x − μ ) t ( A A t ) − 1 ( x − μ ) ) , x ∈ R n f(\bm{x})=\frac{1}{(\sqrt{2 \pi})^{n} \sqrt{\operatorname{det}\left(\bm{A} \bm{A}^{t}\right)}} \exp \left(-\frac{1}{2}(\bm{x}-\boldsymbol{\mu})^{t}\left(\bm{A} \bm{A}^{t}\right)^{-1}(\bm{x}-\boldsymbol{\mu})\right), \quad \bm{x} \in \mathfrak{R}^{n} f(x)=(2π )ndet(AAt) 1exp(21(xμ)t(AAt)1(xμ)),xRn

复高斯随机变量 z = x + i y z=x+iy z=x+iy x x x y y y 分别为独立的均值为0的高斯随机变量,具有相同的方差,则
x ∼ N ( 0 , 1 / 2 ) , y ∼ N ( 0 , 1 / 2 ) x \sim N \left(0, 1/2\right), y \sim N \left(0, 1/2\right) xN(0,1/2),yN(0,1/2)
记为 z ∼ C N ( 0 , 1 ) z \sim CN \left(0, 1\right) zCN(0,1)
复高斯随机向量 z = x + i y \bm{z}=\bm{x}+i\bm{y} z=x+iy,满足 [ x , y ] t [\bm{x},\bm{y}]^t [x,y]t 是高斯随机向量。
如果一个随机变量的分布与它乘以 e i θ e^{i\theta} eiθ分布一致,则是圆对称随机变量(circularly symmetry)。

一个复高斯随机向量 w \bm{w} w 是包含了n个独立服从标准复高斯随机变量的集合。
记为 z ∼ C N ( 0 , I ) z \sim CN \left(0, I\right) zCN(0,I)

  • 一个圆对称的高斯随机向量的均值为0
  • 一个圆对称的高斯随机向量由 E [ x x ∗ ] E[\bm{x}\bm{x}^*] E[xx] 决定
  • 一个标量复高斯随机变量由两个独立的高斯随机变量组成

瑞利分布

两个独立的高斯随机变量的模服从瑞利分布:
f ( r ) = r exp ⁡ ( − r 2 2 ) , r ≥ 0 f(r)=r \exp \left(-\frac{r^{2}}{2}\right), \quad r \geq 0 f(r)=rexp(2r2),r0
以上是两个随机变量服从 N ( 0 , 1 / 2 ) N(0,1/2) N(0,1/2) 时。

瑞利分布的模的平方服从指数分布。

  • 31
    点赞
  • 134
    收藏
    觉得还不错? 一键收藏
  • 7
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值