复高斯分布的模平方服从非中心卡方分布

复高斯分布的模平方服从非中心卡方分布。下面是详细的证明过程:

1. 复高斯分布的定义
假设 \( Z \) 是一个复随机变量,且 \( Z \) 服从复高斯分布。可以表示为:
\[ Z = X + iY \]
其中,\( X \) 和 \( Y \) 是服从均值为 \( \mu_X \) 和 \( \mu_Y \),方差为 \( \sigma^2 \) 的实高斯分布的独立随机变量。即:
\[ X \sim \mathcal{N}(\mu_X, \sigma^2) \]
\[ Y \sim \mathcal{N}(\mu_Y, \sigma^2) \]

2. 模平方的定义
复随机变量 \( Z \) 的模平方定义为:
\[ |Z|^2 = Z \overline{Z} = (X + iY)(X - iY) = X^2 + Y^2 \]

3. 实高斯变量平方和的分布
已知 \( X \sim \mathcal{N}(\mu_X, \sigma^2) \) 和 \( Y \sim \mathcal{N}(\mu_Y, \sigma^2) \),那么 \( X^2 + Y^2 \) 的分布为非中心卡方分布。

具体来说,\( X^2 + Y^2 \) 服从自由度为2的非中心卡方分布,非中心参数为:
\[ \lambda = \frac{\mu_X^2 + \mu_Y^2}{\sigma^2} \]

 4. 非中心卡方分布的定义
非中心卡方分布的定义如下:若 \( X_1 \) 和 \( X_2 \) 是两个独立的服从标准正态分布的随机变量,则:
\[ W = X_1^2 + X_2^2 \]
服从自由度为2的中心卡方分布。如果 \( X_1 \) 和 \( X_2 \) 的均值不为零,而是分别为 \( \mu_1 \) 和 \( \mu_2 \),则:
\[ W = \left(\frac{X_1 - \mu_1}{\sigma}\right)^2 + \left(\frac{X_2 - \mu_2}{\sigma}\right)^2 \]
服从自由度为2、非中心参数为 \( \lambda = \frac{\mu_1^2 + \mu_2^2}{\sigma^2} \) 的非中心卡方分布。

 5. 结论
由于复高斯分布的模平方 \( |Z|^2 = X^2 + Y^2 \),且 \( X^2 + Y^2 \) 服从自由度为2的非中心卡方分布,因此可以得出结论:**复高斯分布的模平方服从非中心卡方分布**。

这个结果在信号处理、通信等领域有广泛应用,例如在分析噪声功率和能量时。

  • 9
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值