【数据结构】栈和队列相互实现

目录

栈实现队列

思路

入队列

出队列

获取队头元素

队列实现栈

思路

入栈

出栈

 获取栈顶元素

完整代码

栈实现队列

队列实现栈


栈实现队列

思路

栈的特点是 先进后出, 队列的特点是 先进新出,这就意味着我们无法通过一个栈来实现队列,那两个栈呢?

事实上,两个栈是可以实现队列的,stack1和stack2 思路如下:

入队列:先把所有元素都放到stack1中。

 出队列:判断stack2是否为空

  • 为空则把stack1中元素按照出栈顺序放到stack2中,同时返回stack2栈顶元素。

  • 不为空则直接返回stack2栈顶元素。

定义基础变量

class MyQueue {

    public ArrayDeque<Integer> stack1;
    public ArrayDeque<Integer> stack2;

    public MyQueue() {
        stack1 = new ArrayDeque<>();
        stack2 = new ArrayDeque<>();
    }
}

入队列

 offer方法

根据上面思路,新元素放在stack1中。

    public void  offer(int x) {
        stack1.push(x);
    }
    

出队列

poll方法

在实现具体内容之前,我们要先判断两个栈是否都为空。

这里需要写个empty方法,判断条件是:两个栈是否为空

    public boolean empty() {
        return stack1.isEmpty() && stack2.isEmpty();
    }

根据上面的思路,来完成出队列。

 出队列:判断stack2是否为空

  • 为空则把stack1中元素按照出栈顺序放到stack2中,同时返回stack2栈顶元素
  • 不为空则直接返回stack2栈顶元素。
    public int poll() {
        if(empty()){
            return -1;
        }
        if(stack2.isEmpty()){
            while(!stack1.isEmpty()){
            //第一个栈的所有元素 放到第二个栈当中
            stack2.push(stack1.pop());
            }
        }
        return stack2.pop();
    }

获取队头元素

peek方法

思路和pop方法一样,不过返回的是stack2.peek();

    public int peek() {
        if(empty()){
            return -1;
        }
        if(stack2.isEmpty()){
            while(!stack1.isEmpty()){
              stack2.push(stack1.pop());
            }
        }
        return stack2.peek();
    }

 

队列实现栈

思路

这里也是用两个队列实现栈,分别为qu1和qu2。

入栈:把元素放到不为空的队列中。如果都为空,放在qu1中。


出栈:不为空的队列 中的 size-1个元素放到另一个队列当中,最后剩下的元素模拟出栈。

定义基础变量

class MyStack {
    public Queue<Integer> qu1;
    public Queue<Integer> qu2;


    public MyStack() {
        this.qu1 = new LinkedList<>();
        this.qu2 = new LinkedList<>();
    }
}

入栈

push方法 

根据上面的思路:把元素放到不为空的队列中。如果都为空,放在qu1中。

    //入栈
    public void push(int x) {
        if(!qu1.isEmpty()){
            qu1.offer(x);
        }else if(!qu2.isEmpty()){
            qu2.offer(x);
        }else{
            qu1.offer(x);
        }
    }

出栈

pop方法

根据上面的思路:把 不为空的队列 中的 size-1个元素放到另一个队列当中,最后剩下的元素模拟出栈。

同时还要考虑两个队列是否都为空,都为空将无法向下进行。所以可以写个empty方法来判断。

    public boolean empty() {
        return qu1.isEmpty() && qu2.isEmpty();
    }

 pop方法完整如下:

    //出栈
    public int pop() {
        if(empty()){
            return -1;
        }
        if(qu1.isEmpty()){
            int size = qu2.size();
            for(int i = 0; i < size - 1; i++){
                qu1.offer(qu2.poll());
            }
            return qu2.poll();
        }else{
            int size = qu1.size();
            for(int i = 0; i < size - 1; i++){
                qu2.offer(qu1.poll());
            }
            return qu1.poll();
            
        }
    }

 获取栈顶元素

peek方法

获取栈顶元素和pop方法的思路相似, 不过这里不需要删除栈顶元素,而是把size给元素全部放到另一个队列中,同时需要定义一个中间值 val 来记录数据。

    //获取栈顶元素
    public int top() {
        if(empty()){
            return -1;
        }
        if(!qu1.isEmpty()){
            int size = qu1.size();
            int val = 0;
            for(int i = 0; i < size; i++){
                val = qu1.poll();
                qu2.offer(val);
            }
            return val;
        }else {
            int size = qu2.size();
            int val = 0;
            for(int i = 0; i < size; i++){
                val = qu2.poll();
                qu1.offer(val);
            }
            return val;
        } 
    }

完整代码

栈实现队列

class MyQueue {

    public ArrayDeque<Integer> stack1;
    public ArrayDeque<Integer> stack2;

    public MyQueue() {
        stack1 = new ArrayDeque<>();
        stack2 = new ArrayDeque<>();
    }
    
    public void offer(int x) {
        stack1.push(x);
    }
    
    public int poll() {
        if(empty()){
            return -1;
        }
        if(stack2.isEmpty()){
            while(!stack1.isEmpty()){
            //第一个栈的所有元素 放到第二个栈当中
            stack2.push(stack1.pop());
            }
        }
        return stack2.pop();
    }
    
    public int peek() {
        if(empty()){
            return -1;
        }
        if(stack2.isEmpty()){
            while(!stack1.isEmpty()){
              stack2.push(stack1.pop());
            }
        }
        return stack2.peek();
    }
    
    public boolean empty() {
        return stack1.isEmpty() && stack2.isEmpty();
    }
}

队列实现栈

class MyStack {

    public Queue<Integer> qu1;
    public Queue<Integer> qu2;

    public MyStack() {
        qu1 = new LinkedList<>();
        qu2 = new LinkedList<>();
    }
    
    public void push(int x) {
        if(!qu1.isEmpty()){
            qu1.offer(x);
        }else if(!qu2.isEmpty()){
            qu2.offer(x);
        }else{
            qu1.offer(x);
        }
    }
    
    public int pop() {
        if(empty()){
            return -1;
        }
        if(!qu1.isEmpty()){
            int size = qu1.size();
            for(int i = 0; i < size-1; i++){
                qu2.offer(qu1.poll());
            }
            return qu1.poll();
        }else {
            int size = qu2.size();
            for(int i = 0; i < size-1; i++){
                qu1.offer(qu2.poll());
            }
            return qu2.poll();
        } 
    }
    
    //在队列里面找中间值 存放移动的数据
    public int peek() {
        if(empty()){
            return -1;
        }
        if(!qu1.isEmpty()){
            int size = qu1.size();
            int val = 0;
            for(int i = 0; i < size; i++){
                val = qu1.poll();
                qu2.offer(val);
            }
            return val;
        }else {
            int size = qu2.size();
            int val = 0;
            for(int i = 0; i < size; i++){
                val = qu2.poll();
                qu1.offer(val);
            }
            return val;
        } 
    }
    
    public boolean empty() {
        return qu1.isEmpty() && qu2.isEmpty();
    }
}

评论 73
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值