题目链接:https://leetcode.com/problems/scramble-string/description/
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great"
:
great
/ \
gr eat
/ \ / \
g r e at
/ \
a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node "gr"
and swap its two children, it produces a scrambled string "rgeat"
.
rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t
We say that "rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes "eat"
and "at"
, it produces a scrambled string "rgtae"
.
rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a
We say that "rgtae"
is a scrambled string of "great"
.
Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
The basic idea is to divide s1(s2) into two substrings with length k and len-k and check if the two substrings s1[0..k-1] and s1[k, len-1] are the scrambles of s2[0..k-1] and s2[k,len-1] or s2[len-k, len-1] and s2[0..len-k-1] via recursion. The straigtforward recursion will be very slow due to many repeated recursive function calls. To speed up the recursion, we can use an unordered_map isScramblePair to save intermediate results. The key used here is s1+s2, but other keys are also possible (e.g. using indices)
(96ms)
class Solution {
public:
bool isScramble(string s1, string s2) {
unordered_map<string,bool> isScramblePair;
return dp_helper(isScramblePair,s1,s2);
}
private:
bool dp_helper(unordered_map<string,bool>& isScramblePair,string s1,string s2)
{
int len=s1.size();
bool res=false;
if(len==0)
return true;
else if(len==1)
return s1==s2;
else
{
// checked before, return intermediate result directly
if(isScramblePair.count(s1+s2))
return isScramblePair[s1+s2];
if(s1==s2)
res=true;
else
{
for(int i=1;i<len && !res;i++)
{
//check if s1[0..k-1] and s1[k, len-1] are the scrambles of s2[0..k-1] and s2[k,len-1]
res=res || (dp_helper(isScramblePair,s1.substr(0,i),s2.substr(0,i)) && dp_helper(isScramblePair,s1.substr(i,len-i),s2.substr(i,len-i)));
//check if s1[0..k-1] and s1[k, len-1] are the scrambles of s2[len-k, len-1] and s2[0..len-k-1]
res=res || (dp_helper(isScramblePair,s1.substr(0,i),s2.substr(len-i,i)) && dp_helper(isScramblePair,s1.substr(i,len-i),s2.substr(0,len-i)));
}
}
//save the intermediate results
return isScramblePair[s1+s2]=res;
}
}
};
The recursive version has exponential complexity. To further improve the performance, we can use bottom-up DP, which is O(N^4) complexity. Here we build a table isS[len][i][j], which indicates whether s1[i..i+len-1] is a scramble of s2[j..j+len-1].
(22ms)
class Solution {
public:
bool isScramble(string s1, string s2) {
int sSize=s1.size(),len;
if(sSize==0)
return true;
if(sSize==1)
return s1==s2;
bool isS[sSize+1][sSize][sSize]={false};
for(int i=0;i<sSize;i++)
for(int j=0;j<sSize;j++)
isS[1][i][j]=s1[i]==s2[j];
for(len=2;len<=sSize;len++)
for(int i=0;i<=sSize-len;i++)
for(int j=0;j<=sSize-len;j++)
{
for(int k=1;k<len && !isS[len][i][j];k++)
{
isS[len][i][j]=isS[len][i][j] || (isS[k][i][j] && isS[len-k][i+k][j+k]);
isS[len][i][j]=isS[len][i][j] || (isS[k][i+len-k][j] && isS[len-k][i][j+k]);
}
}
return isS[sSize][0][0];
}
};
(6ms)
class Solution {
public:
bool isScramble(string s1, string s2) {
if(s1==s2)
return true;
int len=s1.length();
int count[26]={0};
for(int i=0;i<len;i++)
{
count[s1[i]-'a']++;
count[s2[i]-'a']--;
}
// accelerate speed
for(int i=0;i<26;i++)
{
if(count[i]!=0)
return false;
}
for(int i=1;i<=len-1;i++)
{
if(isScramble(s1.substr(0,i),s2.substr(0,i)) && isScramble(s1.substr(i),s2.substr(i)))
return true;
if(isScramble(s1.substr(0,i),s2.substr(len-i)) && isScramble(s1.substr(i),s2.substr(0,len-i)))
return true;
}
return false;
}
};