[lintcode]640. 编辑距离 II

链接:http://www.lintcode.com/zh-cn/problem/edit-distance-ii/

给你两个字符串 S 和 T, 判断他们是否只差一步编辑。

您在真实的面试中是否遇到过这个题? 
Yes
样例

给你字符串 s = "aDb", t= "adb" 
返回 true

思路: 
首先对于这道题,我们先看一下这个编辑是什么意思,应该是指删除以及替换,这两个操作都是最多一次,这就导致,这两个字符串的长度最多相差1,故我们的分类点就是长度。 
1.两个字符串长度相同时,只能进行的操作就是替换,所以我们只需要看需要替换的操作次数是多少,只要其大于1,就可以直接返回错误,如果只有一个,即他们相差一个编辑。 
2.两个字符串长度相差1时,此时我们只能进行的操作是删除,所以我们利用双指针,分别指向两个字符串的起始处,然后判断其是否相等,如果相等则两个指针都移动下一个字符处,如果不等,我们可以将S的指针向后移动一下,一直这样循环下去,最后的判断标准就是t的指针是否移动到最后如果没有,说明他们不只差一步编辑,反之说明只差一步编辑。

bool isOneEditDistance(string &s, string &t) {
  int n1 = s.size(), n2 = t.size();
  vector<vector<int>> dp(n1 + 1, vector<int>(n2 + 1, 0));
  for(int i = 1; i <= n1; i++) {
    dp[i][0] = i;
  }

  for(int i = 1; i <= n2; i++) {
    dp[0][i] = i;
  }

  for(int i = 1; i <= n1; i++) {
    for(int j = 1; j <= n2; j++) {
      if(s[i - 1] == s[j - 1]) {
        dp[i][j] = dp[i - 1][j - 1];
      } else {
        // replace s or t
        dp[i][j] = dp[i - 1][j - 1] + 1; 

        if(i - 1 >= j) {
          // because you can't insert characters, 
          // delete s of i character
          dp[i][j] = min(dp[i][j], dp[i - 1][j] + 1); // replace s or t
        }
        else if(j - 1 >= i) {
          // because you can't insert characters, 
         // delete t of j character
          dp[i][j] = min(dp[i][j], dp[i][j - 1] + 1); // replace s or t
        }
      }
    }
  }

  return dp[n1][n2] <= 1;
}

class Solution {
public:
    /**
     * @param s: a string
     * @param t: a string
     * @return: true if they are both one edit distance apart or false
     */
    bool isOneEditDistance(string &s, string &t) {
        // write your code here
        int len1=s.size(),len2=t.size();
        
        if(len1==len2)
        {
            int flag=0;
            for(int i=0;i<len1;i++)
            {
                if(s[i]!=t[i])
                {
                    flag++;
                }
            }
            if(flag!=1) return false;
                return true;
        }
        else if(abs(len1-len2)==1)
        {
            if(len1>len2)
            {
                int ps=0,pt=0;
                while(ps<len1 && pt<len2)
                {
                    if(s[ps]==t[pt])
                    {
                        ps++;
                        pt++;
                    }
                    else
                    {
                        ps++;
                    }
                }
                if(pt==len2)    return true;
                return false;
            }
            else
            {
                int ps=0,pt=0;
                while(ps<len1 && pt<len2)
                {
                    if(s[ps]==t[pt])
                    {
                        ps++;
                        pt++;
                    }
                    else
                    {
                        pt++;
                    }
                }
                if(ps==len1)    return true;
                return false;
            }
        }
        return false;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值