链接:http://www.lintcode.com/zh-cn/problem/edit-distance-ii/
给你两个字符串 S 和 T, 判断他们是否只差一步编辑。
您在真实的面试中是否遇到过这个题?
Yes
样例
给你字符串 s = "aDb"
, t= "adb"
返回 true
思路:
首先对于这道题,我们先看一下这个编辑是什么意思,应该是指删除以及替换,这两个操作都是最多一次,这就导致,这两个字符串的长度最多相差1,故我们的分类点就是长度。
1.两个字符串长度相同时,只能进行的操作就是替换,所以我们只需要看需要替换的操作次数是多少,只要其大于1,就可以直接返回错误,如果只有一个,即他们相差一个编辑。
2.两个字符串长度相差1时,此时我们只能进行的操作是删除,所以我们利用双指针,分别指向两个字符串的起始处,然后判断其是否相等,如果相等则两个指针都移动下一个字符处,如果不等,我们可以将S的指针向后移动一下,一直这样循环下去,最后的判断标准就是t的指针是否移动到最后如果没有,说明他们不只差一步编辑,反之说明只差一步编辑。
bool isOneEditDistance(string &s, string &t) {
int n1 = s.size(), n2 = t.size();
vector<vector<int>> dp(n1 + 1, vector<int>(n2 + 1, 0));
for(int i = 1; i <= n1; i++) {
dp[i][0] = i;
}
for(int i = 1; i <= n2; i++) {
dp[0][i] = i;
}
for(int i = 1; i <= n1; i++) {
for(int j = 1; j <= n2; j++) {
if(s[i - 1] == s[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
} else {
// replace s or t
dp[i][j] = dp[i - 1][j - 1] + 1;
if(i - 1 >= j) {
// because you can't insert characters,
// delete s of i character
dp[i][j] = min(dp[i][j], dp[i - 1][j] + 1); // replace s or t
}
else if(j - 1 >= i) {
// because you can't insert characters,
// delete t of j character
dp[i][j] = min(dp[i][j], dp[i][j - 1] + 1); // replace s or t
}
}
}
}
return dp[n1][n2] <= 1;
}
class Solution {
public:
/**
* @param s: a string
* @param t: a string
* @return: true if they are both one edit distance apart or false
*/
bool isOneEditDistance(string &s, string &t) {
// write your code here
int len1=s.size(),len2=t.size();
if(len1==len2)
{
int flag=0;
for(int i=0;i<len1;i++)
{
if(s[i]!=t[i])
{
flag++;
}
}
if(flag!=1) return false;
return true;
}
else if(abs(len1-len2)==1)
{
if(len1>len2)
{
int ps=0,pt=0;
while(ps<len1 && pt<len2)
{
if(s[ps]==t[pt])
{
ps++;
pt++;
}
else
{
ps++;
}
}
if(pt==len2) return true;
return false;
}
else
{
int ps=0,pt=0;
while(ps<len1 && pt<len2)
{
if(s[ps]==t[pt])
{
ps++;
pt++;
}
else
{
pt++;
}
}
if(ps==len1) return true;
return false;
}
}
return false;
}
};