1.假设函数h(x),因为逻辑回归算法的y值只有零和一两个值,那么如果依然要用线性回归的方程来表达这一种趋势的话,会导致误差很大
于是就引进了一个sigmoid函数,这个函数是无限趋近于0和1。
也就是h(x)=g(z)=1/1+e^(-z)。所以我们假设当这个函数的值取到>=0.5时,那么就表示预测y=1.
也就是说当z>=0时(z的值就可以表示为theta’*X,相当于线性回归里的h(x))
那么如果我们得到的数据集是这样的,我们的最终目标就是找到最好的那个theta值,能够很好的区别开两种数据集
把这个theta代入到z得到一个函数,这个函数就是决策边界,最后新的数据集的特征值代入这个决策边界函数,>=0的话就判断y=1否则等于0.
中间costFunction的推导呢简单说一下
就是如果按照之前梯度下降来算的话,是得不到最小代价的,因为sigmoid函数并不是一个凸函数
非凸函数不一定能收敛到全局最小值,也就是不一定能得到最小代价
所以把costFunction改为了
分为了两部分,第一部分是当y=1,h(x)=1时误差为0,且随着h(x)的值缩小而变大
第二部分就是当y=0时,h(x)为0时误差为0,且随着h(x)的值变大而变大
接下来就可以计算使误差最小的theta值了
吴恩达machine-learning逻辑回归
最新推荐文章于 2024-10-31 17:11:04 发布