有权图的表示和存储

有权图的表示和存储

带权图的存储于无全图的存储差别在于边上,这里将边作为一个类存储。
Edge类

package MinimumSpanTrees;

/**
 * @ Description: 图的边 类
 * @ Date: Created in 07:47 2018/8/2
 * @ Author: Anthony_Duan
 */
public class Edge<Weight extends Number & Comparable> implements Comparable<Edge<Weight>> {
    private int a, b;
    private Weight weight;


    public Edge(int a, int b, Weight weight) {
        this.a = a;
        this.b = b;
        this.weight = weight;
    }

    public Edge(Edge<Weight> e)
    {
        this.a = e.a;
        this.b = e.b;
        this.weight = e.weight;
    }

    public int v(){
        return a;
    }

    public int w(){
        return b;
    }

    public Weight wt(){
        return weight;
    }


    public int other(int x){
        assert x == a || x == b;
        return x == a ? b : a;
    }

    @Override
    public String toString() {
        return "" + a + "-" + b + ":" + weight;
    }

    @Override
    public int compareTo(Edge that) {
        if (weight.compareTo(that.wt()) < 0) {
            return -1;
        } else if (weight.compareTo(that.wt()) > 0) {
            return +1;
        } else {
            return 0;
        }
    }
}

DenseWeightedGraph

package MinimumSpanTrees;

import java.util.Vector;

/**
 * @ Description: 用邻接矩阵表示带权稠密图
 * @ Date: Created in 11:35 2018/8/1
 * @ Author: Anthony_Duan
 */
public class DenseWeightedGraph<Weight extends Number & Comparable> implements WeightedGraph {
    //节点数
    private int n;

    //边数
    private int m;
    //是否为有向图
    private boolean directed;

    //图的具体数据
    private Edge<Weight>[][] g;


    /**
     * 构造函数
     * @param n
     * @param directed
     */
    public DenseWeightedGraph(int n, boolean directed) {
        assert n >= 0;
        this.n = n;
        //初始化没有任何边
        this.m = 0;
        this.directed = directed;

        //g初始化为n*n的布尔矩阵,每一个g[i][j]均为false,表示没有任何边
        //false为Boolean型的变量的默认值
        g = new Edge[n][n];
        for(int i = 0 ; i < n ; i ++) {
            for(int j = 0 ; j < n ; j ++) {
                g[i][j] = null;
            }
        }
    }

    //返回节点个数
    @Override
    public int V(){
        return n;
    }

    //返回边的个数
    @Override
    public int E(){
        return m;
    }


    /**
     * 向图中添加一个边
     * @param e
     */
    @Override
    public void addEdge(Edge e) {
        assert e.v() >= 0 && e.v() < n;
        assert e.w() >= 0 && e.w() < n;

        if (hasEdge(e.v(), e.w())) {
            return;
        }

        g[e.v()][e.w()] = new Edge(e);
        if (e.v() != e.w() && !directed) {
            g[e.w()][e.v()] = new Edge(e.w(), e.v(), e.wt());
        }
        m++;
    }


    /**
     * 验证图中是否有从v到w的边
     * @param v
     * @param w
     * @return
     */
    @Override
    public boolean hasEdge(int v, int w) {
        assert v >= 0 && v < n;
        assert w >= 0 && w < n;
        return g[v][w] != null;
    }


    /**
     * 显示图的信息
     */
    @Override
    public void show() {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                if (g[i][j] != null) {
                    System.out.print(g[i][j].wt() + "\t");
                } else {
                    System.out.print("NULL\t");
                }
            }
            System.out.println();
        }
    }


    /**
     * 返回图中一个顶点的所有邻边
     * 由于java使用引用机制,返回一个Vector不会带来额外开销
     * @param v
     * @return
     */
    @Override
    public Iterable<Edge<Weight>> adj(int v) {
        assert v >= 0 && v < n;
        Vector<Edge<Weight>> adjV = new Vector<>();

        for (int i = 0; i < n; i++) {
            if (g[v][i]!=null) {
                adjV.add(g[v][i]);
            }
        }

        return adjV;
    }
}

SparseWeightedGraph

package MinimumSpanTrees;

import java.util.Vector;

/**
 * @ Description: 用邻接表表示稀疏图
 * @ Date: Created in 11:35 2018/8/1
 * @ Author: Anthony_Duan
 */
public class SparseWeightedGraph<Weight extends Number & Comparable> implements WeightedGraph {
    //节点数
    private int n;
    //边数
    private int m;
    //是否为有向图
    private boolean directed;
    //图的具体数据
    private Vector<Edge<Weight>>[] g;

    public SparseWeightedGraph(int n, boolean directed) {
        assert n >= 0;
        this.n = n;
        //初始化没有任何边
        this.m = m;
        this.directed = directed;

        //g初始化为n个空vector 表示每一个g[i]都表示为空,即没有任何边
        g = (Vector<Edge<Weight>>[]) new Vector[n];
        for (int i = 0; i < n; i++) {
            g[i] = new Vector<Edge<Weight>>();
        }
    }

    //返回节点个数
    @Override
    public int V(){
        return n;
    }
    //返回边的个数
    @Override
    public int E(){
        return m;
    }


    /**
     * 向图中添加一个边
     * 这里并没有处理平行边的情况
     * 因为邻接表如果要考虑没有平行边,每次添加边都需要遍历一次g[v]
     * 效率太低,所以一般是先添加,最后一次性处理,
     * 这里就暂时允许有平行边
     * @param v
     * @param w
     */
    @Override
    public void addEdge(Edge e) {
        assert e.v() >= 0 && e.v() < n;
        assert e.w() >= 0 && e.w() < n;

        g[e.v()].add(new Edge(e));
        if (e.v() != e.w() && !directed) {
            g[e.w()].add(new Edge(e.w(), e.v(), e.wt()));
        }
        m++;
    }


    /**
     * 显示图的信息
     */
    @Override
    public void show() {
        for( int i = 0 ; i < n ; i ++ ){
            System.out.print("vertex " + i + ":\t");
            for( int j = 0 ; j < g[i].size() ; j ++ ) {
                Edge e = g[i].elementAt(j);
                System.out.print( "( to:" + e.other(i) + ",wt:" + e.wt() + ")\t");
            }
            System.out.println();
        }
    }


    /**
     * 验证图中是否有从v到w的边
     * @param v
     * @param w
     * @return
     */
    @Override
    public boolean hasEdge(int v, int w) {
        assert v >= 0 && v < n;
        assert w >= 0 && w < n;
        for (int i = 0; i < g[v].size(); i++) {
            if (g[v].elementAt(i).other(v) == w) {
                return true;
            }
        }
        return false;
    }


    /**
     * 返回图中一个顶点的所有邻边
     * 由于java使用引用机制所以返回一个Vector不会带来额外开销
     * @param v
     * @return
     */
    @Override
    public Iterable<Edge<Weight>> adj(int v) {
        assert v >= 0 && v < n;
        return g[v];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值