- 基本概念
- 几种特殊的图
- 图的存储
- 图的基本操作
图的定义
由顶点集V和边集E组成的集合。(边集可以为空,顶点集必须非空)
【注意】:线性表可以是空表,树可以是空树,但是图一定是非空集。
图的相关概念
有向图
无向图
无向边(边)、有向边<弧>
简单图:不存在重复边;不存在顶点到自身的边。
多重图:图中某两个结点的边数多于1条,或顶点自身连向自身。
度:指依附于该顶点的边的条数。(有向图的度是指入度和出度之和。)
入度
出度
路径:两个顶点之间的一条路径,是指顶点序列。
回路:第一个顶点和最后一个顶点相同的路径称为回路或环。
简单路径:在路径序列中,顶点不重复出现的路径称为简单路径。
简单回路:除第一个顶点和最后一个顶点外,其余顶点不重复出现的回路称为简单回路。
路径长度:路径上边的数目。
点到点的距离:两个顶点之间的最短路径。若存在,则最短路径的长度称为两顶点之间的距离;若不存在最短路径,则记该距离为无穷(∞)。
连通:两顶点间有路径存在。有向图中,若从顶点a到顶点b和从顶点b到顶点a之间都有路径,则称这两个顶点是强连通的。
连通图:无向图中,任意两顶点之间都是连通的。
强连通图:有向图中,任意两个顶点之间都是强连通的。
【常见考点】:
对于n个顶点的无向图G,
(1)若G是连通图,则最少有n-1条边。
(2)若G是非连通图,则最多可能有条边。
对于n个顶点的有向图G,
(1)若G是连通图,则最少有n条边。
子图
生成子图:包含原图的所有顶点,和部分边。
连通分量(极大连通子图):子图必须连通,且包含尽可能多的顶点和边。
强连通分量(极大强连通子图)
生成树:连通图的生成树是包含图中全部顶点的一个极小连通子图。极小:边尽可能的少。
若图中顶点数为n,则它的生成树含有n-1条边。对生成树而言,若砍去它的一条边,则会变成非连通图,若加上一条边则会形成一个回路。
生成森林:在非连通图中,连通分量的生成树构成了非连通图的生成森林。
边的权:在一个图中,每条边都可以标上具有某种含义的数值&