图的相关概念和图的存储

本文介绍了图的定义,包括有向图、无向图、简单图和多重图等概念,探讨了图的度、路径、回路等相关概念,并详细讲解了四种常见的图存储方法:邻接矩阵法、邻接表法、十字链表法和邻接多重表法。此外,还讨论了图的基本操作,如添加顶点、删除顶点、添加边、删除边等。
摘要由CSDN通过智能技术生成
  • 基本概念
  • 几种特殊的图
  • 图的存储
  • 图的基本操作

图的定义

由顶点集V和边集E组成的集合。(边集可以为空,顶点集必须非空)

【注意】:线性表可以是空表,树可以是空树,但是图一定是非空集。

图的相关概念

有向图

无向图

无向边(边)、有向边<弧>

简单图:不存在重复边;不存在顶点到自身的边。

多重图:图中某两个结点的边数多于1条,或顶点自身连向自身。

度:指依附于该顶点的边的条数。(有向图的度是指入度和出度之和。)

入度

出度

路径:两个顶点之间的一条路径,是指顶点序列

回路:第一个顶点和最后一个顶点相同的路径称为回路或环。

简单路径:在路径序列中,顶点不重复出现的路径称为简单路径。

简单回路:除第一个顶点和最后一个顶点外,其余顶点不重复出现的回路称为简单回路。

路径长度:路径上边的数目。 

点到点的距离:两个顶点之间的最短路径。若存在,则最短路径的长度称为两顶点之间的距离;若不存在最短路径,则记该距离为无穷(∞)。

连通:两顶点间有路径存在。有向图中,若从顶点a到顶点b和从顶点b到顶点a之间都有路径,则称这两个顶点是强连通的。

连通图:无向图中,任意两顶点之间都是连通的。

强连通图:有向图中,任意两个顶点之间都是强连通的。

【常见考点】:

对于n个顶点的无向图G,

(1)若G是连通图,则最少有n-1条边。

(2)若G是非连通图,则最多可能有C_{n-1}^{2}\textrm{}条边。

对于n个顶点的有向图G,

(1)若G是连通图,则最少有n条边。

子图

生成子图:包含原图的所有顶点,和部分边。

连通分量(极大连通子图):子图必须连通,且包含尽可能多的顶点和边。

强连通分量(极大强连通子图)

生成树:连通图的生成树包含图中全部顶点的一个极小连通子图。极小:边尽可能的少。

若图中顶点数为n,则它的生成树含有n-1条边。对生成树而言,若砍去它的一条边,则会变成非连通图,若加上一条边则会形成一个回路。

生成森林:在非连通图中,连通分量的生成树构成了非连通图的生成森林。

边的权:在一个图中,每条边都可以标上具有某种含义的数值&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值