数字游戏 (dp)

Problem Description
丁丁最近沉迷于一个数字游戏。这个游戏看似简单,但丁丁在研究了很多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易。游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分为m个部分,各部分内的数字相加,相加后得的m个结果对10取模后再相乘,最终得到一个数k。游戏的要求是使你得到的k最大或者最小。注意:无论是负数还是正数,对10取模的结果均为非负数。
丁丁请你编写程序帮他赢得这个游戏。
Input
输入有多组数据,每组数据第1行有两个整数n(1<=n<=50)和m(1<=m<=9)。以下n行每行有1个整数,其绝对值不大于10^4,按顺序给出圈中的数字,首尾相连。
Output
对于每组输入数据,输出两行,各包含一个非负整数,第一行是最小值,第二行是最大值。
Sample Input
4 2
4
3
-1
2
Sample Output
7

81

#include<stdio.h>
#include<string.h>
#define INF 1<<30
int a[120],s[120],m,n;
int dp1[120][15],dp2[120][15];
int maxn,minn;
inline int max(int a,int b)
{
	return a>b?a:b;
}
inline int min(int a,int b)
{
	return a<b?a:b;
}
int main()
{
	//freopen("b.txt","r",stdin);
	int i,j,k,l,tmp;
	while(scanf("%d %d",&m,&n)==2)
	{
		for(i=1;i<=m;i++)
		{
			scanf("%d",&a[i]);
			a[m+i]=a[i];
		}
		s[0]=0;
		for(i=1;i<=2*m;i++)
		{
			s[i]=s[i-1]+a[i];
		}
		maxn=-INF,minn=INF;
		for(l=1;l<=m;l++)
		{
			for(i=1;i<=2*m;i++)
				for(j=1;j<=n;j++)
				{
					dp1[i][j]=INF;
					dp2[i][j]=-INF;
				}
				for(i=l;i<=m+l-1;i++)
				{
					tmp=(s[i]-s[l-1])%10;
					if(tmp<0) tmp+=10;
					dp1[i][1]=tmp;dp2[i][1]=dp1[i][1];
				}
				for(j=2;j<=n;j++)
					for(i=j+l-1;i<=m+l-1;i++)
						for(k=j+l-2;k<i;k++)
						{
							tmp=(s[i]-s[k])%10;
							if(tmp<0) tmp+=10;
							dp1[i][j]=min(dp1[i][j],dp1[k][j-1]*tmp);
							dp2[i][j]=max(dp2[i][j],dp2[k][j-1]*tmp);
						}
						minn=min(dp1[l+m-1][n],minn);
						maxn=max(dp2[l+m-1][n],maxn);
		}
		printf("%d\n%d\n",minn,maxn);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值