.Net 与TLS版本的兼容性

.NET
在支持 TLS 1.1 或 TLS 1.2 操作系统中运行时,兼容最新版本

.NET 4.6 和更高版本
兼容 TLS 1.1 或更高版本(默认设置)。

.NET 4.5 至 4.5.2
默认情况下,.NET 4.5、4.5.1 和 4.5.2 场合, TLS 1.1 和 TLS1.2有效,共有两个选项以进行启用,如下所述。

选项 1:
通过设置 System.Net.ServicePointManager.SecurityProtocol 启用 SecurityProtocolType.Tls12 和 SecurityProtocolType.Tls11,.NET 应用程序可在软件代码中直接启用 TLS 1.1 和 TLS 1.2。以下 C# 代码是示例:

System.Net.ServicePointManager.SecurityProtocol = SecurityProtocolType.Tls12 | SecurityProtocolType.Tls11 | SecurityProtocolType.Tls;

选项 2:
通过将以下两个注册表项中的 SchUseStrongCrypto DWORD 值设置为 1(如果不存在请创建),可在默认情况下启用 TLS 1.2,而无需修改源代码。“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft.NETFramework\v4.0.30319”和“HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft.NETFramework\v4.0.30319”。虽然这些注册表项中的版本号是 4.0.30319,则 .NET 4.5、4.5.1 和 4.5.2 框架也会使用这些值。但默认情况下,这些注册表项将在系统上所有安装 .NET 4.0、4.5、4.5.1 和 4.5.2 应用程序中启用 TLS 1.2。因此在将其部署到生产服务器前,测试此更改是合理措施。这也可用作注册表导入文件。但这些注册表值将不会影响设置 System.Net.ServicePointManager.SecurityProtocol 值的 .NET 应用程序。

.NET 4.0
默认情况下,.NET 4.0 不会启用 TLS 1.2。要默认启用 TLS 1.2,将以下两个注册表项中的 SchUseStrongCrypto DWORD 值设置为 1(如果不存在请创建):“HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft.NETFramework\v4.0.30319”和“HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft.NETFramework\v4.0.30319”。但默认情况下,这些注册表项将在系统上所有安装 .NET 4.0、4.5、4.5.1 和 4.5.2 应用程序中启用 TLS 1.2。我们建议在将其部署到生产服务器前,测试此更改。这也可用作注册表导入文件。但这些注册表值将不会影响设置 System.Net.ServicePointManager.SecurityProtocol 值的 .NET 应用程序。

.NET 3.5 和更低版本
并不兼容 TLS 1.1 或更高版本的加密

### GPT模型概述 GPT(Generative Pre-trained Transformer)是一种基于Transformer架构的大规模预训练语言模型[^2]。它通过大量的无标注数据进行自监督学习,从而具备强大的自然语言理解和生成能力。 #### GPT模型的主要版本 GPT模型经历了多次迭代和发展,在不同阶段推出了多个版本,这些版本逐步提升了模型的能力和效率: - **GPT-1**:这是最早的GPT模型版本,由OpenAI于2018年发布。其核心特点是采用了单向Transformer解码器结构,并利用了大量的未标记文本数据进行预训练,随后针对特定任务进行微调[^1]。 - **GPT-2**:作为GPT-1的升级版,GPT-2显著增加了参数量并扩展了训练数据集规模,这使得它的生成能力和泛化性能得到了极大的提升。此外,还引入了一些新的正则化方法来改善训练稳定性。 - **GPT-3**:进一步扩大了模型尺寸与训练数据范围,成为当时最大的神经网络之一。除了继续增强基础的语言处理功能外,GPT-3还能执行更复杂的推理任务以及跨领域迁移应用。 - **InstructGPT系列及其他变体**:为了更好地满足实际应用场景需求,后续又开发出了专门面向指令跟随等特殊用途优化过的子型号如InstructGPT等。 #### GPT模型的核心架构——Transformer 所有上述提到的不同代际下的具体实现均建立在同一个关键技术框架之上即Transformers。此架构最初是由Google Brain团队提出用于解决序列到序列问题的一种新型深度学习模型设计思路。相比传统的RNN/LSTM结构而言,它完全摒弃掉了循环机制转而依靠注意力机制(Attention Mechanism),允许模型平行计算输入序列中的各个位置之间的关系,极大地提高了训练速度与效果。 以下是简单的Python伪代码展示如何构建一个基本形式上的transformer层: ```python import torch.nn as nn class TransformerLayer(nn.Module): def __init__(self, d_model, num_heads, dropout=0.1): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout) self.linear_layers = nn.Sequential( nn.Linear(d_model, 4 * d_model), nn.ReLU(), nn.Linear(4 * d_model, d_model) ) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): attn_output, _ = self.self_attn(x, x, x) x = x + self.dropout(attn_output) x = self.norm1(x) linear_output = self.linear_layers(x) x = x + self.dropout(linear_output) x = self.norm2(x) return x ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值