目录
干货分享,感谢您的阅读!
在信息泛滥的时代,如何让用户在海量选择中迅速找到心仪的服务?美团的推荐系统正是这座智能桥梁,致力于将用户需求与本地服务完美匹配。然而,随着业务的扩展,系统质量的挑战愈发显著。本文将深入探讨美团推荐系统的质量建设,从数据飞轮效应到精准的质量分计算,揭示如何通过不断优化提升用户体验,为行业内外提供实用的启示和思考。
一、背景引入
(一)基本背景说明
美团到店综合业务的推荐系统是其关键技术组件,旨在通过智能化方式高效匹配用户需求与多元化本地服务,能够涵盖到综业务中的各个行业,包括但不限于洗浴、KTV、美业、医美、亲子、结婚、运动健身、玩乐、教育培训、家居、宠物、酒吧、生活服务等。这要求推荐系统具有良好的扩展性和适应性,能够处理多样化的业务类型和用户需求。
在美团到店综合业务中,推荐系统扮演着关键的角色,是实现供给和需求高效匹配的重要环节。其作用类似于一座智能的桥梁,连接用户的需求与各类本地服务,确保用户能够迅速而准确地找到符合其期望的服务。
推荐系统不仅仅是数据处理的一环,更是传递数据价值的出口。通过分析用户的历史行为、偏好和实时需求,推荐系统能够从庞大的数据中提炼出有价值的信息,为用户提供个性化、精准的服务推荐,实现了数据的最大化利用。
然而,推荐系统的质量直接关系到匹配效果的折损程度。如果推荐系统质量低下,匹配的服务可能不准确,导致用户体验下降,甚至错失一些潜在的商机。因此,推荐系统的质量提升成为确保匹配效果高效的关键步骤。这可能包括采用先进的推荐算法、实时性的数据处理、有效的用户反馈机制等措施,以不断优化系统的性能。
现在我们就以其在质量方面的实践和研究作为基本学习点,进行展开学习一下,具体学习资料主要见:美团综合业务推荐系统的质量模型及实践 - 美团技术团队。
(二)从推荐系统“数据飞轮”看质量建设必要性
想一下,数据在美团到店综合业务中经历了一个闭环的处理过程
-
数据采集与数仓处理: 首先,原始数据从各个业务系统和渠道中被采集,并经过清洗、转化等处理流程后,被存储在数据仓库(数仓)中。这一步是确保数据质量和可用性的关键环节。
-
算法加工: 在数仓中的数据被用于训练和优化推荐算法。算法加工阶段包括对数据的分析、建模、训练推荐模型等步骤,以提高推荐系统的准确性和个性化水平。
-
数据服务到业务系统: 加工后的数据通过数据服务的方式被分发到各个具体的业务系统。这可能包括对用户进行个性化推荐、精准定位等服务,以满足用户的具体需求。
-
客户端埋点: 为了获取用户在客户端的实时行为数据,如点击、浏览、购买等,通过在客户端进行埋点操作,记录用户与业务系统的交互。这些埋点数据是获取用户反馈和行为的关键来源。
-
数据重新流转回数仓: 最后,客户端埋点收集到的实时数据重新流转回数仓。这样的闭环设计有助于不断更新推荐模型,优化算法,并更好地适应用户的变化和业务的发展。
数据处理链路形成的一种正向的、增强型的效应,类似于一个飞轮(flywheel)在不断累积能量。数据的处理和流转形成一个循环,有助于推动整个系统的运转。通过这一完整的数据处理闭环,形成了数据的“飞轮效应”。每一个阶段都为下一个阶段提供了关键的信息和反馈,实现了数据的循环迭代,有助于推动业务系统的不断优化和创新。这种设计有助于形成一个具有自我学习和不断提升能力的数据生态系统。
在整个链路中,质量是关键的因素。如果推荐系统的质量不高,即推荐效果不佳,将导致整个链路中的匹配效果减弱,从而降低了系统的效率和效果。所以考虑进行推荐系统的质量模型建设是完全必须且有价值的,需要学习其如何以可用性为基础,然后调整计算方式,进而指导精细化的质量运营。
二、质量的定位和考量思考
(一)对推荐系统质量的思考迭代
在推荐系统中,产品通过理解用户场景,提出产品需求,向推荐团队传递用户需求。这在外部体现为产品的迭代和更新。同时,在推荐系统团队内部,团队成员相互协作,学习最佳优化模型策略,这在内部体现为数据团队的算法迭代。
上图的可用性计算公式中强调了长时间的概念,而“需要”和“预期”主要体现在对外提供服务上。这是合理的,因为可用性是一个泛化的指标,定义上通常是对外提供服务的泛化表达。大多数后台系统的交付功能通常在“有”和“无”之间,因此对服务降级有一定的空间。
然而,对于以效果为核心目标的推荐系统,质量的思考逐渐演变为对外提供服务的“好”和“坏”。在推荐系统中,存在着更为广泛的效果光谱,而不仅仅是“有”和“无”。因此,对推荐系统质量的思考迭代,从“有”和“无”到“好”和“坏”,这也是改造可用性计算方式的出发点。这种改变强调了对用户体验和推荐效果的更精细的评估和优化。