近期NexusTrade的创始人Austin Starks撰文介绍了他使用OpenAI o1模型构建投资组合的一些经验。并展示如何使用OpenAI o1彻底改变金融市场的研究、分析和交易方式。
作者在首次接触OpenAI发布的 o1-preview模型时并没有获得良好的体验,主要是由于 o1-preview相应速度缓慢,成本高昂以及部分功能缺失,然而,OpenAI最新发布的O1模型彻底改变了作者的看法。与其前身O1预览版相比,新版模型在以下几个方面进行了显著升级:
-
更精准的推理,更少的推理标记: 新版模型更加智能,推理速度更快,其智能水平已达到博士级别。
-
视觉能力: 与“失明”的O1预览版不同,新版O1模型可以通过视觉API“看见”图像。
-
函数调用: 最重要的是,新版模型支持函数调用,这使得我们能够在API中生成语法正确的JSON对象。
这些新升级(特别是函数调用功能)促使作者决定进一步测试新版模型的强大功能。
O1模型在金融研究中的应用:超越华尔街
为了测试新版O1模型的性能,作者向它提出了一个复杂的金融问题:
问题: 自2000年1月1日以来,SPY(标普500 ETF)在7天内的跌幅超过5%的次数有多少?换句话说,在时间t,SPY在(t + 7天)的回报率低于-5%的次数有多少。
要求: 结果中需包含这些下跌的数据范围,并显示回报率百分比,并以Markdown表格格式呈现结果。
1. O1模型的回答:详尽且精准
O1模型给出了以下结果:
2. 对比传统模型:O1模型的优势
为了更好地理解O1模型的优势,作者将其与Claude 3.5 Sonnet进行了对比。
Claude 3.5 Sonnet的回答:
结果对比:
-
数据不完整: Claude 3.5 Sonnet只列出了四次下跌,而O1模型列出了九次。
-
格式不符合要求: Claude 3.5 Sonnet没有按照Markdown表格格式呈现结果。
-
缺乏细节: Claude 3.5 Sonnet没有提供开始/结束价格和回报率等详细信息。
3. 深入分析:O1模型的强大功能
为了进一步展示O1模型的强大功能,作者继续与它进行对话,并要求它对上述数据进行分析。
O1模型的回答:
以下是一些关键观察结果:
1. 最大跌幅:
- 2022年6月: -10.16%(6月2日 - 6月13日)
- 2000年4月: -8.84%(4月5日 - 4月14日)
- 2002年8月: -8.69%(8月22日 - 9月3日)
- 2000年12月: -8.65%(12月11日 - 12月20日)
2. 显著模式:
- 下跌主要集中在重大市场事件期间,例如2000-2002年互联网泡沫、2008年金融危机和2020年新冠疫情。
3. 平均7天跌幅:
- 平均7天跌幅约为-7.45%。
4. 长期回报:
- 对于每次7天下跌,模型分析了SPY在随后的180天和365天的回报率。
- 平均而言,SPY在180天后上涨约8.58%,在365天后上涨约20.29%。
4. 交易策略制定:利用O1模型的力量
在与O1模型的对话中,作者获得了以下关键见解:
-
市场反弹趋势: 即使面对巨大的回撤,市场往往会在接下来的几个月内反弹,包括2008年金融危机和新冠疫情等前所未有的市场低迷时期。
-
逆向投资策略: 我们可以利用市场倾向于在回调后反弹的特点,制定逆向投资策略。
基于这些见解,作者利用LLM制定了以下交易规则:
-
买入规则: 如果我们的SPXL(标普500 3倍杠杆ETF)头寸低于500美元,则买入50%的购买力。
-
卖出规则1: 如果我们10000天(一个任意大的数字)没有卖出SPXL,并且头寸上涨了10%,则卖出20%的投资组合价值。
-
卖出规则2: 如果SPXL的股价从我们上次卖出时上涨了10%,则卖出20%的投资组合价值。
-
买入规则2: 如果我们的SPXL头寸下跌了12%或更多,则买入40%的购买力。
5. 回测结果:令人振奋的发现
作者利用O1模型对上述策略进行了回测,时间跨度为2020年1月1日至2022年1月1日。
回测结果:
分析:
-
投资组合表现: 尽管最大回撤高达-69%,但投资组合的表现仍然优于大盘85%。
-
策略优势: 该策略利用了SPXL在牛市中的表现优于SPY 3倍的特点。
-
风险提示: 该策略在长期市场低迷时期尤其危险。
部署策略:无需编写代码即可实现自动化交易
O1模型不仅帮助作者制定了交易策略,还使作者能够轻松地将策略部署到市场中。
1. 自动化交易平台:NexusTrade
在NexusTrade平台上,作者可以将O1模型生成的策略无缝集成到自动化交易系统中。
2. 部署过程:简单高效
-
策略编辑: 可以随时调整策略参数以适应不同的市场条件。
-
回测优化: 可以对策略进行回测,并根据结果进行优化。
-
一键部署: 一旦策略经过验证并优化,只需点击一个按钮即可将其部署到市场中。
O1模型——金融市场的变革力量
OpenAI O1模型是金融领域的一大步进步。它使任何人都能够进行高度复杂的金融研究,而无需成为SQL专家。其影响不可低估。
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓