5月15日消息,OpenAI在美国当地时间15日凌晨宣布,正式向ChatGPT用户推出GPT-4.1、GPT-4.1 mini以及GPT-4.1 nano三款人工智能模型。
OpenAI发言人表示,GPT-4.1模型将帮助软件工程师在使用ChatGPT编写或调试代码时获得更高效的支持。 与GPT-4o相比,GPT-4.1在编程能力和指令执行上表现更优,且运行速度比其o系列推理模型更快。
在多个关键评测中,OpenAI表示GPT-4.1展现出强劲性能:在SWE-bench Verified软件工程基准测试中,GPT-4.1得分55%,较GPT-4o的33%提升了22%。较GPT-4.5的38%提升了17%,可以说是“4.1完胜和淘汰了4.5”。
在Scale的MultiChallenge指令执行测试中,GPT-4.1的得分为38%,其表现较GPT-4o的28%提升了10%。
此外,该模型的冗余输出也减少了50%,这一改进在早期企业用户测试中获得高度评价。
与此同时,OpenAI推出的小参数模型GPT-4.1 mini将作为新默认模型,取代GPT-4o mini,并适用于所有ChatGPT用户,包括免费用户。
而对于对低延迟要求较高的任务,GPT-4.1 nano 是OpenAI目前速度最快、成本最低的模型。它体积小巧,却具备出色的性能,支持100万 token 的上下文窗口,在多项基准测试中表现优异:MMLU 得分为 80.1%,GPQA 为 50.3%,Aider polyglot 编码测试中达到 9.8%,甚至高于 GPT-4o mini。这使得GPT-4.1 nano非常适合用于分类、自动补全等对响应速度和效率高度敏感的任务。
这三款模型均可通过ChatGPT界面左上角的“更多模型”下拉菜单选择。用户可在GPT-4.1、GPT-4.1 mini与推理模型(如 o3、o4-mini、o4-mini-high)之间自由切换,增强灵活性。
目前,OpenAI正将GPT-4.1模型向ChatGPT Plus、Pro和Team订阅用户推出。企业版与教育版用户的访问权限将在未来几周陆续开放。同时,OpenAI将GPT-4.1 mini提供给所有免费和付费用户使用。
此外,根据版本说明,OpenAI表示,GPT-4.0 mini将从ChatGPT中全面下架,所有用户将不再使用该版本。
上下文长度、速度与模型访问
在API中,GPT-4.1可处理最多100万个token的输入。这使得API用户可以一次性输入整套代码库、合同文件或大型日志文件,适用于多文档审阅、财务分析等企业场景。
OpenAI承认,在大规模输入场景中,该模型表现可能有所下降,但企业测试表明,在数十万token级别内仍保持稳健性能。
与前代模型表现对比
在GPT-4.1发布前,OpenAI于2025年2月发布了研究预览模型GPT-4.5。后者着重提升无监督学习能力、知识深度与降低幻觉率(从GPT-4o的61.8%降至37.1%),并增强情感理解与长文本生成能力,但多数用户认为其性能提升较为“温和”。
GPT-4.5虽然在内容创作和交流方面显得更自然,但在数学和编程方面仍不及OpenAI的o系列模型,且API使用成本高昂,输出百万token最高收费180美元。业内人士指出,虽然GPT-4.5在通用对话和内容生成方面更强,但在面向开发者的应用场景中表现不佳。
相比之下,GPT-4.1聚焦速度与指令执行的实用性,虽然它不具备4.5的知识深度和情感建模能力,但在实用的代码辅助和用户指令遵循性方面表现更好。
API定价
在定价方面,GPT-4.1通过OpenAI API提供,当前价格如下:每百万输入token收费2美元,缓存输入为0.5美元,输出为8美元。轻量版GPT-4.1 mini的费用更低:每百万输入token为0.4美元,缓存输入为0.1美元,输出为1.6美元。
相较之下,谷歌的Flash-Lite和Flash模型在价格上更具竞争力,每百万token输入费用在0.075美元至0.1美元之间,输出则为0.3美元至0.4美元,成本仅为GPT-4.1基本价格的十分之一。
从API专属到ChatGPT集成
GPT-4.1最初仅面向第三方开发者,通过OpenAI API提供服务,但在用户强烈要求下,OpenAI最终决定将该模型引入ChatGPT平台。
OpenAI后训练研究负责人Michelle Pokrass在帖子中确认了这一决策转变的原因:“我们原计划只在API中提供该模型,但大家都希望能在ChatGPT中使用它。祝大家编码愉快!”
今年4月,OpenAI曾通过开发者API发布GPT-4.1和GPT-4.1 mini模型。当时,AI研究界曾对OpenAI未附带安全报告就发布GPT-4.1提出批评,认为该公司在模型透明度方面的标准正在降低。
对此,OpenAI当时解释称,尽管GPT-4.1在性能和速度上优于GPT-4o,但它并非前“前沿模型”(frontier model),因此不需要遵循针对更强大模型所设定的相同安全报告要求。
OpenAI安全系统负责人Johannes Heidecke发文称:“GPT-4.1并未引入新的交互方式或模态,其智能水平也未超越o3模型。这意味着,虽然该模型的安全考量依然重要,但与前沿模型存在本质差异。”
在发布新模型当天,OpenAI承诺将更频繁地公开内部AI模型安全评估结果,相关数据已纳入新上线的“安全评估中心”。此举被视为OpenAI增强透明度的最新举措。
此次GPT-4.1引入ChatGPT,正值外界对AI编程工具关注度不断上升之际。据传,OpenAI即将宣布以30亿美元收购市场热门编程工具Windsurf。(文/腾讯科技特约编译 金鹿)
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈