【LeetCode-503】下一个更大元素II

4.3 下一个更大元素II【503】

4.3.1 题目描述

4.3.2 方法一:单调栈 + 循环数组

思路及算法

我们可以使用单调栈解决本题。单调栈中保存的是下标,从栈底到栈顶的下标在数组 nums \textit{nums} nums 中对应的值是单调不升的。

每次我们移动到数组中的一个新的位置 i,我们就将当前单调栈中所有对应值小于 nums [ i ] \textit{nums}[i] nums[i] 的下标弹出单调栈,这些值的下一个更大元素即为 nums [ i ] \textit{nums}[i] nums[i](证明很简单:如果有更靠前的更大元素,那么这些位置将被提前弹出栈)。随后我们将位置 i 入栈。

但是注意到只遍历一次序列是不够的,例如序列 [2,3,1],最后单调栈中将剩余 [3,1],其中元素 [1] 的下一个更大元素还是不知道的。

一个朴素的思想是,我们可以把这个循环数组「拉直」,即复制该序列的前 n−1 个元素拼接在原序列的后面。这样我们就可以将这个新序列当作普通序列,用上文的方法来处理。

而在本题中,我们不需要显性地将该循环数组「拉直」,而只需要在处理时对下标取模即可。

代码

class Solution {
    public int[] nextGreaterElements(int[] nums) {
        int n = nums.length;
        int[] ret = new int[n];
        Arrays.fill(ret, -1);
        Deque<Integer> stack = new LinkedList<Integer>();
        for (int i = 0; i < n * 2 - 1; i++) {
            while (!stack.isEmpty() && nums[stack.peek()] < nums[i % n]) {
                ret[stack.pop()] = nums[i % n];
            }
            stack.push(i % n);
        }
        return ret;
    }
}

复杂度分析

  • 时间复杂度: O(n),其中 n 是序列的长度。我们需要遍历该数组中每个元素最多 2 次,每个元素出栈与入栈的总次数也不超过 4 次。
  • 空间复杂度: O(n),其中 n 是序列的长度。空间复杂度主要取决于栈的大小,栈的大小至多为 2n-1。

4.3.3 my answer—双层for循环

class Solution {
    public int[] nextGreaterElements(int[] nums) {
        int res[] = new int[nums.length];
        int count = 0;
        for(int i = 0;i<nums.length;i++){
            boolean flag = false;
            count = i + 1;
            while(count%nums.length != i){
                count = count%nums.length;
                if(nums[count] > nums[i]){
                    res[i] = nums[count];
                    flag = true;
                    break;
                }
                count++;
            }
            if(flag == false) res[i] = -1;
        }
        return res;
    }
}

复杂度分析

  • 时间复杂度: O ( n 2 ) O(n^2) O(n2),其中 n 是序列的长度。
  • 空间复杂度: O(n),其中 n 是序列的长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值