【力扣】503. 下一个更大元素 II

以下为本人思路,以及力扣官方题解

题目

给定一个循环数组(最后一个元素的下一个元素是数组的第一个元素),输出每个元素的下一个更大元素。数字 x x x 的下一个更大的元素是按数组遍历顺序,这个数字之后的第一个比它更大的数,这意味着你应该循环地搜索它的下一个更大的数。如果不存在,则输出 − 1 -1 1

示例 1:

输入: [ 1 , 2 , 1 ] [1,2,1] [1,2,1]
输出: [ 2 , − 1 , 2 ] [2,-1,2] [2,1,2]
解释: 第一个 1 1 1 的下一个更大的数是 2 2 2
数字 2 2 2 找不到下一个更大的数;
第二个 1 1 1 的下一个最大的数需要循环搜索,结果也是 2 2 2

注意:

输入数组的长度不会超过 10000 10000 10000

本人思路

用一层循环遍历整个数组的元素,再用第二层循环寻找比当前遍历到的元素大的下一个更大元素。

代码

class Solution {
    public int[] nextGreaterElements(int[] nums) {
        int n = nums.length;
        int[] ans = new int[n];
        for (int i=0; i<n; i++)
        {
            int index = i+1;
            int j = index%n;
            while (j != i)
            {
                if (nums[j] > nums[i])
                {
                    ans[i] = nums[j];
                    break;
                }
                index ++;
                j = index%n;	// 实现循环遍历数组
            }
            if (j == i)
            {
                ans[i] = -1;
            }
        }
        return ans;
    }
}

复杂度分析

  • 时间复杂度: O ( n 2 ) O(n^2) O(n2),其中 n n n 为数组 n u m s nums nums 的长度。一共两层循环,最差的情况是遍历两次数组,才能找到一个“下一个更大元素”,所以时间复杂度是 O ( n 2 ) O(n^2) O(n2)
  • 空间复杂度: O ( n ) O(n) O(n),其中 n n n 为数组 n u m s nums nums 的长度。需要长度为 n n n 的数组 a n s ans ans 来保存“下一个更大元素”。

提交结果:通过

  • 执行用时: 186 m s 186 ms 186ms
  • 内存消耗: 39 M B 39 MB 39MB

官方题解

方法一:单调栈 + 循环数组

思路及算法

我们可以使用单调栈解决本题。单调栈中保存的是下标,从栈底到栈顶的下标在数组 n u m s nums nums 中对应的值是单调不升的。

每次我们移动到数组中的一个新的位置 i i i,我们就将当前单调栈中所有对应值小于 n u m s [ i ] nums[i] nums[i] 的下标弹出单调栈,这些值的下一个更大元素即为 n u m s [ i ] nums[i] nums[i](证明很简单:如果有更靠前的更大元素,那么这些位置将被提前弹出栈)。随后我们将位置 i i i 入栈。

但是注意到只遍历一次序列是不够的,例如序列 [ 2 , 3 , 1 ] [2,3,1] [2,3,1],最后单调栈中将剩余 [ 3 , 1 ] [3,1] [3,1],其中元素 [ 1 ] [1] [1] 的下一个更大元素还是不知道的。

一个朴素的思想是,我们可以把这个循环数组「拉直」,即复制该序列的前 n − 1 n-1 n1 个元素拼接在原序列的后面。这样我们就可以将这个新序列当作普通序列,用上文的方法来处理。

而在本题中,我们不需要显性地将该循环数组「拉直」,而只需要在处理时对下标取模即可。

代码

class Solution {
    public int[] nextGreaterElements(int[] nums) {
        int n = nums.length;
        int[] ret = new int[n];
        Arrays.fill(ret, -1);
        Deque<Integer> stack = new LinkedList<Integer>();
        for (int i=0; i<n*2-1; i++)
        {
            while (!stack.isEmpty() && nums[stack.peek()] < nums[i%n])
            {
                ret[stack.pop()] = nums[i%n];
            }
            stack.push(i % n);
        }
        return ret;
    }
}

复杂度分析

  • 时间复杂度: O ( n ) O(n) O(n),其中 n n n 是序列的长度。我们需要遍历该数组中每个元素最多 2 2 2 次,每个元素出栈与入栈的总次数也不超过 4 4 4 次。

  • 空间复杂度: O ( n ) O(n) O(n),其中 n n n 是序列的长度。空间复杂度主要取决于栈的大小,栈的大小至多为 2 n − 1 2n-1 2n1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨momo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值