以下为本人思路,以及力扣官方题解
题目
给定一个循环数组(最后一个元素的下一个元素是数组的第一个元素),输出每个元素的下一个更大元素。数字 x x x 的下一个更大的元素是按数组遍历顺序,这个数字之后的第一个比它更大的数,这意味着你应该循环地搜索它的下一个更大的数。如果不存在,则输出 − 1 -1 −1。
示例 1:
输入: [ 1 , 2 , 1 ] [1,2,1] [1,2,1]
输出: [ 2 , − 1 , 2 ] [2,-1,2] [2,−1,2]
解释: 第一个 1 1 1 的下一个更大的数是 2 2 2;
数字 2 2 2 找不到下一个更大的数;
第二个 1 1 1 的下一个最大的数需要循环搜索,结果也是 2 2 2。
注意:
输入数组的长度不会超过 10000 10000 10000。
本人思路
用一层循环遍历整个数组的元素,再用第二层循环寻找比当前遍历到的元素大的下一个更大元素。
代码
class Solution {
public int[] nextGreaterElements(int[] nums) {
int n = nums.length;
int[] ans = new int[n];
for (int i=0; i<n; i++)
{
int index = i+1;
int j = index%n;
while (j != i)
{
if (nums[j] > nums[i])
{
ans[i] = nums[j];
break;
}
index ++;
j = index%n; // 实现循环遍历数组
}
if (j == i)
{
ans[i] = -1;
}
}
return ans;
}
}
复杂度分析
- 时间复杂度: O ( n 2 ) O(n^2) O(n2),其中 n n n 为数组 n u m s nums nums 的长度。一共两层循环,最差的情况是遍历两次数组,才能找到一个“下一个更大元素”,所以时间复杂度是 O ( n 2 ) O(n^2) O(n2)。
- 空间复杂度: O ( n ) O(n) O(n),其中 n n n 为数组 n u m s nums nums 的长度。需要长度为 n n n 的数组 a n s ans ans 来保存“下一个更大元素”。
提交结果:通过
- 执行用时: 186 m s 186 ms 186ms。
- 内存消耗: 39 M B 39 MB 39MB。
官方题解
方法一:单调栈 + 循环数组
思路及算法
我们可以使用单调栈解决本题。单调栈中保存的是下标,从栈底到栈顶的下标在数组 n u m s nums nums 中对应的值是单调不升的。
每次我们移动到数组中的一个新的位置 i i i,我们就将当前单调栈中所有对应值小于 n u m s [ i ] nums[i] nums[i] 的下标弹出单调栈,这些值的下一个更大元素即为 n u m s [ i ] nums[i] nums[i](证明很简单:如果有更靠前的更大元素,那么这些位置将被提前弹出栈)。随后我们将位置 i i i 入栈。
但是注意到只遍历一次序列是不够的,例如序列 [ 2 , 3 , 1 ] [2,3,1] [2,3,1],最后单调栈中将剩余 [ 3 , 1 ] [3,1] [3,1],其中元素 [ 1 ] [1] [1] 的下一个更大元素还是不知道的。
一个朴素的思想是,我们可以把这个循环数组「拉直」,即复制该序列的前 n − 1 n-1 n−1 个元素拼接在原序列的后面。这样我们就可以将这个新序列当作普通序列,用上文的方法来处理。
而在本题中,我们不需要显性地将该循环数组「拉直」,而只需要在处理时对下标取模即可。
代码
class Solution {
public int[] nextGreaterElements(int[] nums) {
int n = nums.length;
int[] ret = new int[n];
Arrays.fill(ret, -1);
Deque<Integer> stack = new LinkedList<Integer>();
for (int i=0; i<n*2-1; i++)
{
while (!stack.isEmpty() && nums[stack.peek()] < nums[i%n])
{
ret[stack.pop()] = nums[i%n];
}
stack.push(i % n);
}
return ret;
}
}
复杂度分析
-
时间复杂度: O ( n ) O(n) O(n),其中 n n n 是序列的长度。我们需要遍历该数组中每个元素最多 2 2 2 次,每个元素出栈与入栈的总次数也不超过 4 4 4 次。
-
空间复杂度: O ( n ) O(n) O(n),其中 n n n 是序列的长度。空间复杂度主要取决于栈的大小,栈的大小至多为 2 n − 1 2n-1 2n−1。