说明
数据平台系统会和各种各样的数据存储结构打交道,mogodb就是其中一个,它是典型的no sql数据库,半结构化数据库,也称作文档型数据库。
而不支持sql语句进行查询统计,需要抽取到数据平台 ,而第一次抽取后需要 进行数据核对,所以用不同的业务场景逻辑 对数据平台和mongodb要分别
用语句统计 比对结果数据。
注意点
1 日期格式 按日期范围统计时 时分秒需带上
"$gte" : ISODate("2013-02-24T16:00:00Z") ,在mongobooster里面带上时分秒和不带统计结果不一样,有差异
2 avg 函数 与其他大部分一样
一般的数据库avg函数坟墓都是忽略null的记录的,像mysql oracle hive 都是的(亲自 验证过),而db2是不忽略,这也体现了其 “规范性”,具体说明以mysql为例见图:
忽略了cc这条记录,而 而db2 是2/3
3 group by
为实现
select campaign_id,campaign_name,count(subscriber_id),count(distinct subscriber_id)
group by campaign_id,campaign_name from campaigns;
db.campaigns.aggregate([
{" $ match":{" subscriber_id":{" $ ne":null}}},
//计算所有出现
{" $ group":{
" _id":{
" campaign_id":" $ campaign_id",
" campaign_name":" $ campaign_name",
" subscriber_id":" $ subscriber_id"
},
" count":{" $ sum":1}
}},
//对所有事件求和并计数不同的
{" $ group":{
" _id":{
" campaign_id":" $ _id.campaign_id",
" campaign_name":" $ _id.campaign_name"
},
" totalCount" :{" $ sum":" $ count"},
" uniqueCount":{" $ sum":1}
}}
])
附
https://www.cnblogs.com/zhoujie/p/mongo1.html