uva 307 Sticks

本文深入探讨了一道经典的深度优先搜索(DFS)题目,并详细解释了如何通过有效的剪枝策略来优化算法性能,避免超时问题。通过对代码的逐行分析,揭示了剪枝的关键点及其背后的原理。

这道题目的剪枝比较困难,我超时了无数次,重要的剪枝的地方都写在注释里面了,看来dfs的剪枝还是很考技术的。

#include <stdio.h>
#include <algorithm>
using namespace std;
#define		MAX		1000

int stick[MAX];
bool visited[MAX];

int cmp(const void *a, const void *b)
{
	return *((int*)b) - *((int*)a);
}

bool dfs(int cur, int start, int last_sum, int max_pos, int target_length)
{
	int i, j, cur_length;

	//printf("dfs(%d,%d,%d,%d,%d)\n", cur, start, last_sum, max_pos, target_length);

	if(cur == max_pos+1)
	{
		return true;
	}

	for(i=start; i<=max_pos; i++)
	{
		if(visited[i])
			continue;

		cur_length = last_sum + stick[i];
		if(cur_length < target_length)
		{
			visited[i] = true;
			if(dfs(cur+1, i+1, cur_length, max_pos, target_length))
				return true;

			//在cur位置继续换下一个可能的数值
			visited[i] = false;
			for(j=i+1; j<=max_pos; j++)
			if(stick[j] != stick[i])
				break;
			i = j-1;
		
		}
		else if(cur_length == target_length)
		{
			visited[i] = true;
			if(dfs(cur+1, 1, 0, max_pos, target_length))
				return true;

			visited[i] = false;
			//就算接下来在cur位置换上一样的数值使得cur_length==target_length成立,还是没有办法递归到最后,所以直接返回false
			return false;
		}
		//cur_length>target_length时,继续换下一个可能的数值
		//如果这一组的第一根小木棒不能够和后面的小木棒组成一根长木棒,那么这根小木棒将永远不能够被用到,最后就会差一根小木棒
		// 这是最重要的一个剪枝,因为它在解答树的递归深度还比较浅的时候就已经进行剪枝了,所以剪枝的效果最好
		if(last_sum == 0)
			return false;	
	}

	return false;
}

bool is_possible(int target_length, int stick_num)
{
	//printf("is_possible(%d,%d)\n", target_length, stick_num);

	for(int i=1; i<=stick_num; i++)
		visited[i] = false;
	if(dfs(1, 1, 0, stick_num, target_length))
		return true;
	else
		return false;
}

void func(int n, int sum_length, int max_length)
{
	int i;

	qsort((void*)(stick+1), n, sizeof(int), cmp);

	for(i=max_length; i<=sum_length; i++)
	{
		if(sum_length%i==0)
		{
			if(is_possible(i, n))
			break;
		}
	}

	printf("%d\n", i);
}

int main(void)
{
	int n, i;
	int sum_length, max_stick;

	//freopen("input.dat", "r", stdin);

	while(scanf("%d", &n), n)
	{
		sum_length = 0;
		max_stick = 0;
		for(i=1; i<=n; i++)
		{
			scanf("%d", stick+i);
			if(max_stick < stick[i])
				max_stick = stick[i];
			sum_length += stick[i];
		}
		func(n, sum_length, max_stick);
	}

	return 0;
}


智慧政务:开启智慧城市新篇章 在当今数字化时代,智慧政务作为智慧城市建设的核心组成部分,正逐步成为提升政府治理能力和公共服务水平的关键力量。 面对传统政务模式中的信息孤岛、管理困难、安全威胁等诸多问题,智慧政务以其独特的优势和解决方案,为政府现代化转型开辟了新路径。 一、传统政务的困境 传统政务模式下,各部门间信息不互通,形成严重的信息孤岛现象,导致管理效率低下。 政府网站缺乏有效管理,信息更新缓慢,无法及时响应民众需求。 同时,安全威胁如黑客攻击和非法入侵频发,严重威胁政务信息安全。 此外,公务人员每日忙于单一、重复的审批任务,企业办事仍需奔波于多个部门之间,个人办证流程复杂且效率低下,这些问题迫切需要得到解决。 二、智慧政务的发展方向与优势 智慧政务通过资源开放、内部协调、决策精准化等手段,推动政府向更加透明、互动、高效的方向发展。 其发展阶段涵盖了从基本在线服务到流程和组织转型的全方位变革。 智慧政务应用深度广泛,包括统一的业务处理云平台、数据交换平台等,实现了政务流程的全面优化。 智慧政务的优势显著:首先,它大幅提高了行政效能,通过优化审批流程,缩短了审批周期,提升了服务质量。 其次,智慧政务促进了信息公开,增强了工作透明度,完善了监督考核机制。 此外,智慧政务还积极响应节能减排号召,实现无纸化办公,减少纸张及打印耗材的使用,降低了出行能耗。 三、智慧政务解决方案:云平台的崛起 云计算作为智慧政务的基础设施,以其资源共享、创新模式、降低成本、随需服务等特性,为智慧政务建设提供了强有力的技术支撑。 通过云平台,政府各部门能够更好地共享信息化基础资源,解决传统政务中基础设施使用率低、资源需求分散等问题。 同时,云计算带来的建设和服务模式创新,使政府信息化工作重点从资产管理转向服务管理,提高了政府运行效率。 四、智慧政务的应用模式与愿景 智慧政务的应用模式实现了从物理实体存在到网络虚拟方式的转变,政府组织结构也从金字塔型向网络型扁平化结构过渡。 这种转变使得政府能够跨越地理限制,实现7×24小时不间断服务。 智慧政务的愿景是构建全程电子化办公环境,待办事件及时推送,政务新闻通过APP及时发布,实现各种审批流程的一站式办理,企业所需政务信息及时推送。 总之,智慧政务作为智慧城市建设的钥匙,正以其独特的优势和解决方案,引领政府向更加高效、透明、互动的方向发展。 随着技术的不断进步和应用模式的不断创新,智慧政务的未来将更加光明,为构建智慧城市、提升民众生活质量作出更大贡献。
内容概要:本文围绕复杂威胁环境下的多无人机协同路径规划问题,提出了一种基于多段杜宾斯(Dubins)路径的协同策略,并提供了完整的Matlab代码实现。该研究重点解决在存在障碍物、禁飞区或其他威胁的环境中,多架无人机如何协同规划出满足动力学约束、避障要求且总体复杂威胁环境下的多无人机协同路径规划研究——基于多段杜宾斯(Dubins)路径的协同策略(Matlab代码实现)性能最优的安全路径。方法结合了Dubins曲线对无人机最小转弯半径等运动学限制的有效建模能力,通过多段路径拼接提升路径灵活性和适应性,并设计协同机制以避免无人机间的冲突,实现高效的任务执行。; 适合人群:具备一定编程基础,熟悉Matlab语言,对无人机路径规划、智能优化算法或自动化控制领域感兴趣的研究生、科研人员及工程技术人员。; 使用场景及目标:①用于科研学习,理解多无人机协同路径规划的核心挑战与解决方案;②作为仿真平台,复现并验证基于Dubins路径的规划算法;③为实际无人机编队飞行、侦察、救援等应用场景提供算法设计与实现参考。; 阅读建议:建议读者结合文中提供的Matlab代码,逐步理解算法的实现逻辑,重点关注威胁环境建模、Dubins路径生成、多机协同避碰等关键环节,并可通过修改参数或场景进行扩展实验,深化对路径规划策略的理解与应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值