八皇后问题介绍
思路
温馨提示:如果在给第n个皇后找位置时,发现放置的所有位置都和其他皇后相互攻击,则就要回退到上一个皇后,调整一下上一个皇后的位置,判断一下,如果上一个皇后和前面的皇后都不相互攻击,又可以开始进入下一个皇后的摆放了(即刚刚找不到位置放的第n个皇后)。
代码实现
public class Queue8 {
//定义一个max表示共有多少个皇后
int max = 8;
//定义数组array,保存皇后放置位置的结果,比如arr = {0, 4, 7, 5, 2, 6, 1, 3}
int[] array = new int[max];
static int count = 0;
public static void main(String[] args) {
Queue8 queue8 = new Queue8();
queue8.check(0);
System.out.printf("一共有%d种解法",count);
}
//编写一个方法,放置第n个皇后
//特别注意:check 是每一次递归时,进入到check中都有 for (int i = 0; i < max; i++), 因此会有回溯
private void check(int n){
if(n == max){ // n = 8,代表8个皇后都已经摆放好
print();
return;
}
//依次放入皇后,并判断是否冲突
for (int i = 0; i < max; i++) {
//先把当前这个皇后n,放到该行的第1列
array[n] = i;
//判断当放置第n个皇后到i列时,是否冲突
if(judge(n)){ //不冲突
//接着放第n+1个皇后,即开始递归
check(n + 1);
}
//如果冲突就继续执行 array[n] = i; 即将第n个皇后放置在本行后移的一个位置
}
}
//查看当我们摆放第n个皇后,就去检测该皇后是否和前面已经摆放好的皇后冲突
/**
*
* @param n 表示第n个皇后(n可以取0)
* @return
*/
private boolean judge(int n){
for (int i = 0; i < n; i++) {
//说明
//1. array[i] == array[n] 表示判断第n个皇后是否和前面的 n-1个皇后在同一列
//2. Math.abs(n - i) == Math.abs(array[n] - array[i]) 表示判断第n个皇后是否和第i皇后在同一斜线
// n=1 放置第2列, n=1, array[1]=1
// Math.abs(1-0)=1 Math.abs(array[1]-array[0])=Math.abs(1-0)=1
//3. 判断是否在同一行,没有必要,n每次都在递增
if(array[i] == array[n] || Math.abs(n - i) == Math.abs(array[n] - array[i])){
return false;
}
}
return true;
}
//写一个方法,可以将皇后摆放的位置输出
private void print(){
count++;
for (int i = 0; i < array.length; i++) {
System.out.print(array[i] + " ");
}
System.out.println();
}
}
结果截图: