数据结构+算法--八皇后问题分析和实现(递归回溯)

八皇后问题介绍

在这里插入图片描述

思路

在这里插入图片描述
在这里插入图片描述
温馨提示:如果在给第n个皇后找位置时,发现放置的所有位置都和其他皇后相互攻击,则就要回退到上一个皇后,调整一下上一个皇后的位置,判断一下,如果上一个皇后和前面的皇后都不相互攻击,又可以开始进入下一个皇后的摆放了(即刚刚找不到位置放的第n个皇后)。

代码实现

public class Queue8 {
    //定义一个max表示共有多少个皇后
    int max = 8;
    //定义数组array,保存皇后放置位置的结果,比如arr = {0, 4, 7, 5, 2, 6, 1, 3}
    int[] array = new int[max];
    static int count = 0;
    public static void main(String[] args) {

        Queue8 queue8 = new Queue8();
        queue8.check(0);
        System.out.printf("一共有%d种解法",count);

    }

    //编写一个方法,放置第n个皇后
    //特别注意:check 是每一次递归时,进入到check中都有 for (int i = 0; i < max; i++), 因此会有回溯
    private void check(int n){
        if(n == max){  // n = 8,代表8个皇后都已经摆放好
            print();
            return;
        }

        //依次放入皇后,并判断是否冲突
        for (int i = 0; i < max; i++) {
            //先把当前这个皇后n,放到该行的第1列
            array[n] = i;
            //判断当放置第n个皇后到i列时,是否冲突
            if(judge(n)){  //不冲突
                //接着放第n+1个皇后,即开始递归
                check(n + 1);
            }
            //如果冲突就继续执行  array[n] = i; 即将第n个皇后放置在本行后移的一个位置
        }
    }



    //查看当我们摆放第n个皇后,就去检测该皇后是否和前面已经摆放好的皇后冲突
    /**
     *
     * @param n  表示第n个皇后(n可以取0)
     * @return
     */
    private boolean judge(int n){
        for (int i = 0; i < n; i++) {
            //说明
            //1. array[i] == array[n]  表示判断第n个皇后是否和前面的 n-1个皇后在同一列
            //2. Math.abs(n - i) == Math.abs(array[n] - array[i])  表示判断第n个皇后是否和第i皇后在同一斜线
            //   n=1 放置第2列, n=1, array[1]=1
            //   Math.abs(1-0)=1  Math.abs(array[1]-array[0])=Math.abs(1-0)=1
            //3. 判断是否在同一行,没有必要,n每次都在递增
            if(array[i] == array[n] || Math.abs(n - i) == Math.abs(array[n] - array[i])){
                return false;
            }
        }
        return true;
    }


    //写一个方法,可以将皇后摆放的位置输出
    private void print(){
        count++;
        for (int i = 0; i < array.length; i++) {
            System.out.print(array[i] + " ");
        }
        System.out.println();
    }



}

结果截图:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值