GeoHash编码原理和代码演示

本文介绍了GeoHash编码原理,用于大数据领域的地理位置信息快速查询。GeoHash通过二分法结合编码,将地球经纬度范围映射成Base32编码。文章提供了案例,涉及背景概述、原理详解以及代码演示。
摘要由CSDN通过智能技术生成

GeoHash编码原理和代码演示

1. 背景

1.1 概述

  1. 在大数据领域中,时常需要进行海量数据的映射检索,其中GPS转换为地理位置以及IP地址转换为地理位置就是一种很常见需求。
  2. 由于数据量很大,如何进行快速查询就需要使用到各种算法。
  3. 在大数据领域,常见的快速匹配如布隆过滤器,bitmap算法,hyperloglog算法这些是位图算法。
  4. 今天要说的geohash算法,则是二分法结合编码的一种地理位置信息算法。

1.2 原理

  1. 经度范围是东经180到西经180,纬度范围是南纬90到北纬90,我们设定西经为负,南纬为负,所以地球上的经度范围就是[-180, 180],纬度范围就是[-90,90]。如果以本初子午线、赤道为界,地球可以分成4个部分
  2. 纬度范围[-90°, 0°)用二进制0代表,(0°, 90°]用二进制1代表,经度范围[-180°, 0°)用二进制0代表,(0°, 180°]用二进制1代表,那么地球可以分成如下4个部分
    在这里插入图片描述
  3. 更小范围二分划分
    在这里插入图片描述
  4. 转换计算方法步骤
  • 将经纬度变成二进制。
    在这里插入图片描述
    在这里插入图片描述
  • 将经纬度合并
    在这里插入图片描述
  • 按照Base32进行编码
    在这里插入图片描述

参考自:https://www.jianshu.com/p/2fd0cf12e5ba

2. 案例

  1. 环境
  • idea 2020
  • jdk 1.8
  • maven 3.6.3
  • pom文件
<dependencies>

        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值