【机器学习】sklearn中的回归问题性能评估方法----------图像计算常用的指标

本文介绍了sklearn中用于评估回归模型性能的四个关键指标:explained_variance_score、mean_absolute_error、mean_squared_error和r2_score。这些指标衡量模型预测值与真实值的差异,其中explained_variance_score和r2_score取值范围在0到1之间,值越接近1表示模型拟合效果越好;mean_absolute_error和mean_squared_error则是越小表示效果越好。文章通过概念解释和代码示例详细阐述了这些指标的计算和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

回归问题解决的是对具体数值的预测,比如房价预测、销量预测等等,解决回归问题的神经网络一般只有一个输出节点,这个节点的输出值就是预测值。回归模型是机器学习中很重要的一类模型,不同于常见的分类模型,回归模型的性能评价指标跟分类模型也相差很大,这里记录一下基于sklearn库计算回归模型中常用的四大评价指标主要包括:explained_variance_score、mean_absolute_error、mean_squared_error、r2_score

二、性能评估方法概述

2.1 SSE(残差平方和、和方差、误差平方和--- Sum of Squared Errors

该统计参数计算的是拟合数据和原始数据对应点的误差的平方和,计算公式如下:

其中是真实数据,是拟合数据,>0,从这里可以看出SSE越接近于0,说明模型选择和拟合更好,数据预测也越成功。接下来的MSE和RMSE因为和SSE是同出一宗,所以效果一样。

2.2 MSE(均方差、均方误差---Mean Squared Error)

该统计参数是预测数据和原始数据对应点误差的平方和的均值,也就是SSE/n,和SSE没有太大的区别,计算公式如下:

另外我们还会经常碰到RMSE(Root Mean Squared Error),其实就是对MSE取个根号,为均方根误差。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小胡同1991

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值