一、前言
回归问题解决的是对具体数值的预测,比如房价预测、销量预测等等,解决回归问题的神经网络一般只有一个输出节点,这个节点的输出值就是预测值。回归模型是机器学习中很重要的一类模型,不同于常见的分类模型,回归模型的性能评价指标跟分类模型也相差很大,这里记录一下基于sklearn库计算回归模型中常用的四大评价指标主要包括:explained_variance_score、mean_absolute_error、mean_squared_error、r2_score
二、性能评估方法概述
2.1 SSE(残差平方和、和方差、误差平方和--- Sum of Squared Errors)
该统计参数计算的是拟合数据和原始数据对应点的误差的平方和,计算公式如下:
其中是真实数据,
是拟合数据,
>0,从这里可以看出SSE越接近于0,说明模型选择和拟合更好,数据预测也越成功。接下来的MSE和RMSE因为和SSE是同出一宗,所以效果一样。
2.2 MSE(均方差、均方误差---Mean Squared Error)
该统计参数是预测数据和原始数据对应点误差的平方和的均值,也就是SSE/n,和SSE没有太大的区别,计算公式如下:
另外我们还会经常碰到RMSE(Root Mean Squared Error),其实就是对MSE取个根号,为均方根误差。