keras开发者文档 7:序列化和保存 (Serialization and saving)

介绍

一个keras模型包含多个部件:

  • 一种体系结构或配置,它指定模型包含哪些层以及如何连接它们。

  • 一系列权重值(“模型状态”)。

  • 优化器(通过编译模型定义)。

  • 一组losses和metrics(通过编译模型或调用add_loss()或add_metric()定义)。
    Keras API使得可以将这些一次保存到磁盘,或者仅选择性地保存其中一些:

  • 将所有内容以TensorFlow SavedModel格式(或更旧的Keras H5格式)保存到单个存档中。 这是标准做法。

  • 仅保存架构/配置,通常保存为JSON文件。

  • 仅保存权重值。 通常在训练模型时使用。
    让我们看一下这些选项中的每一个:什么时候使用其中一个? 它们如何工作?

对于 saving & loading 来说最短的答案

如果您只有10秒钟的时间阅读本指南,则需要了解以下内容。

  • 保存一个keras模型
model = ...  # Get model (Sequential, Functional Model, or Model subclass)
model.save('path/to/location')
  • 加载模型
from tensorflow import keras
model = keras.models.load_model('path/to/location')

Setup

import numpy as np
import tensorflow as tf
from tensorflow import keras

全模型的saving & loading

您可以将整个模型保存到单个工件中。 它将包括:

  • 模型的架构/配置
  • 模型的权重值(在训练过程中获悉)
  • 调用了模型的编译信息(如果compile())
  • 优化器及其状态(如果有的话)(这使您可以在离开的位置重新开始训练)
    APIs
    • model.save() or tf.keras.models.save_model()
    • tf.keras.models.load_model()

SavedModel format

Example:
def get_model():
    # Create a simple model.
    inputs = keras.Input(shape=(32,))
    outputs = keras.layers.Dense(1)(inputs)
    model = keras.Model(inputs, outputs)
    model.compile(optimizer="adam", loss="mean_squared_error")
    return model


model = get_model()

# Train the model.
test_input = np.random.random((128, 32))
test_target = np.random.random((128, 1))
model.fit(test_input, test_target)

# Calling `save('my_model')` creates a SavedModel folder `my_model`.
model.save("my_model")

# It can be used to reconstruct the model identically.
reconstructed_model = keras.models.load_model("my_model")

# Let's check:
np.testing.assert_allclose(
    model.predict(test_input), reconstructed_model.predict(test_input)
)

# The reconstructed model is already compiled and has retained the optimizer
# state, so training can resume:
reconstructed_model.fit(test_input, test_target)

SavedModel如何处理自定义对象

保存模型及其层时,SavedModel格式存储类名称,调用函数,损失和权重(以及配置(如果已实现))。 调用函数定义模型/层的计算图。
以下是从SavedModel格式加载自定义图层而不覆盖config方法时发生的情况的示例。

class CustomModel(keras.Model):
    def __init__(self, hidden_units):
        super(CustomModel, self).__init__()
        self.dense_layers = [keras.layers.Dense(u) for u in hidden_units]

    def call(self, inputs):
        x = inputs
        for layer in self.dense_layers:
            x = layer(x)
        return x


model = CustomModel([16, 16, 10])
# Build the model by calling it
input_arr = tf.random.uniform((1, 5))
outputs = model(input_arr)
model.save("my_model")

# Delete the custom-defined model class to ensure that the loader does not have
# access to it.
del CustomModel

loaded = keras.models.load_model("my_model")
np.testing.assert_allclose(loaded(input_arr), outputs)

print("Original model:", model)
print("Loaded model:", loaded)

Keras H5 format

Keras还支持保存包含模型的架构,权重值和compile()信息的单个HDF5文件。 它是SavedModel的轻量替代方案。

Example:
model = get_model()

# Train the model.
test_input = np.random.random((128, 32))
test_target = np.random.random((128, 1))
model.fit(test_input, test_target)

# Calling `save('my_model.h5')` creates a h5 file `my_model.h5`.
model.save("my_h5_model.h5")

# It can be used to reconstruct the model identically.
reconstructed_model = keras.models.load_model("my_h5_model.h5")

# Let's check:
np.testing.assert_allclose(
    model.predict(test_input), reconstructed_model.predict(test_input)
)

# The reconstructed model is already compiled and has retained the optimizer
# state, so training can resume:
reconstructed_model.fit(test_input, test_target)

Saving the architecture

模型的配置(或体系结构)指定了模型包含的层以及如何连接这些层*。 如果您具有模型的配置,则可以使用权重的新初始化状态创建模型,而无需编译信息。

  • 请注意,这仅适用于使用功能性API或顺序API而非子类模型定义的模型。

顺序模型或功能性API模型的配置

这些类型的模型是显式的层图:它们的配置始终以结构化形式提供。
APIs

  • get_config() and from_config()
  • tf.keras.models.model_to_json() and tf.keras.models.model_from_json()
    调用config = model.get_config()将返回一个包含模型配置的Python字典。 然后可以通过Sequential.from_config(config)(对于顺序模型)或Model.from_config(config)(对于功能API模型)来重建同一模型。
层案例
layer = keras.layers.Dense(3, activation="relu")
layer_config = layer.get_config()
new_layer = keras.layers.Dense.from_config(layer_config)
序列模型案例
model = keras.Sequential([keras.Input((32,)), keras.layers.Dense(1)])
config = model.get_config()
new_model = keras.Sequential.from_config(config)
功能模型案例
inputs = keras.Input((32,))
outputs = keras.layers.Dense(1)(inputs)
model = keras.Model(inputs, outputs)
config = model.get_config()
new_model = keras.Model.from_config(config)

Custom objects

Models and layers

子类化模型和层的体系结构在__init__和call方法中定义。 它们被认为是Python字节码,无法序列化为与JSON兼容的配置-您可以尝试序列化字节码(例如通过pickle),但这是完全不安全的,这意味着您的模型无法加载到其他系统上。
为了保存/加载具有自定义图层的模型或子类模型,您应该覆盖get_config和可选的from_config方法。 另外,您应该使用注册自定义对象,以便Keras知道它。

Custom functions

自定义函数(例如,激活丢失或初始化)不需要get_config方法。 只要将功能名称注册为自定义对象,该功能名称就足以加载。

Loading the TensorFlow graph only

可以加载Keras生成的TensorFlow图。 如果这样做,则无需提供任何custom_object。 您可以这样做:

model.save("my_model")
tensorflow_graph = tf.saved_model.load("my_model")
x = np.random.uniform(size=(4, 32)).astype(np.float32)
predicted = tensorflow_graph(x).numpy()
  • 请注意,此方法有几个缺点:*由于可追溯性,您应该始终有权访问所使用的自定义对象。 您不想将无法重新创建的模型投入生产。 * tf.saved_model.load返回的对象不是Keras模型。 因此,它不是那么容易使用。 例如,您将无权访问.predict()或.fit()

  • 即使不鼓励使用它,它也可以为您提供帮助,例如,如果您处于困境中,例如,丢失了自定义对象的代码或在使用tf.keras.models.load_model()加载模型时遇到问题。

Defining the config methods

Specifications:

  • 为了与Keras节省架构和模型的API兼容,get_config应该返回一个JSON可序列化的字典。
  • from_config(config)(classmethod)应该返回从配置创建的新图层或模型对象。 默认实现返回cls(** config)。
    案例:
class CustomLayer(keras.layers.Layer):
    def __init__(self, a):
        self.var = tf.Variable(a, name="var_a")

    def call(self, inputs, training=False):
        if training:
            return inputs * self.var
        else:
            return inputs

    def get_config(self):
        return {"a": self.var.numpy()}

    # There's actually no need to define `from_config` here, since returning
    # `cls(**config)` is the default behavior.
    @classmethod
    def from_config(cls, config):
        return cls(**config)


layer = CustomLayer(5)
layer.var.assign(2)

serialized_layer = keras.layers.serialize(layer)
new_layer = keras.layers.deserialize(
    serialized_layer, custom_objects={"CustomLayer": CustomLayer}
)

Registering the custom object

Keras保留所有内置层,模型,优化器和度量标准类的主列表,该列表用于查找正确的类以调用from_config。 如果找不到该类,则会引发错误(值错误:未知图层)。 有几种方法可以将自定义类注册到此列表中:

  1. 在加载函数中设置custom_objects参数。 (请参见上面“定义配置方法”部分中的示例)
  2. tf.keras.utils.custom_object_scope or tf.keras.utils.CustomObjectScope
  3. tf.keras.utils.register_keras_serializable

Custom layer and function example

class CustomLayer(keras.layers.Layer):
    def __init__(self, units=32, **kwargs):
        super(CustomLayer, self).__init__(**kwargs)
        self.units = units

    def build(self, input_shape):
        self.w = self.add_weight(
            shape=(input_shape[-1], self.units),
            initializer="random_normal",
            trainable=True,
        )
        self.b = self.add_weight(
            shape=(self.units,), initializer="random_normal", trainable=True
        )

    def call(self, inputs):
        return tf.matmul(inputs, self.w) + self.b

    def get_config(self):
        config = super(CustomLayer, self).get_config()
        config.update({"units": self.units})
        return config


def custom_activation(x):
    return tf.nn.tanh(x) ** 2


# Make a model with the CustomLayer and custom_activation
inputs = keras.Input((32,))
x = CustomLayer(32)(inputs)
outputs = keras.layers.Activation(custom_activation)(x)
model = keras.Model(inputs, outputs)

# Retrieve the config
config = model.get_config()

# At loading time, register the custom objects with a `custom_object_scope`:
custom_objects = {"CustomLayer": CustomLayer, "custom_activation": custom_activation}
with keras.utils.custom_object_scope(custom_objects):
    new_model = keras.Model.from_config(config)

Saving & loading only the model’s weights values

您可以选择仅保存和加载模型的权重。 在以下情况下这可能很有用:

  • 您只需要模型即可进行推断:在这种情况下,您无需重新开始训练,因此您不需要编译信息或优化器状态。
  • 您正在进行转移学习:在这种情况下,您将使用现有模型的状态来训练新模型,因此您不需要先前模型的编译信息。

APIs for in-memory weight transfer

可以使用get_weights和set_weights在不同对象之间复制权重:

  • tf.keras.layers.Layer.get_weights(): Returns a list of numpy arrays.
  • tf.keras.layers.Layer.set_weights(): Sets the model weights to the values in the weights argument.
    在内存中将权重从一层转移到另一层
def create_layer():
    layer = keras.layers.Dense(64, activation="relu", name="dense_2")
    layer.build((None, 784))
    return layer


layer_1 = create_layer()
layer_2 = create_layer()

# Copy weights from layer 2 to layer 1
layer_2.set_weights(layer_1.get_weights())

在内存中将权重从一个模型转移到具有兼容架构的另一个模型

# Create a simple functional model
inputs = keras.Input(shape=(784,), name="digits")
x = keras.layers.Dense(64, activation="relu", name="dense_1")(inputs)
x = keras.layers.Dense(64, activation="relu", name="dense_2")(x)
outputs = keras.layers.Dense(10, name="predictions")(x)
functional_model = keras.Model(inputs=inputs, outputs=outputs, name="3_layer_mlp")

# Define a subclassed model with the same architecture
class SubclassedModel(keras.Model):
    def __init__(self, output_dim, name=None):
        super(SubclassedModel, self).__init__(name=name)
        self.output_dim = output_dim
        self.dense_1 = keras.layers.Dense(64, activation="relu", name="dense_1")
        self.dense_2 = keras.layers.Dense(64, activation="relu", name="dense_2")
        self.dense_3 = keras.layers.Dense(output_dim, name="predictions")

    def call(self, inputs):
        x = self.dense_1(inputs)
        x = self.dense_2(x)
        x = self.dense_3(x)
        return x

    def get_config(self):
        return {"output_dim": self.output_dim, "name": self.name}


subclassed_model = SubclassedModel(10)
# Call the subclassed model once to create the weights.
subclassed_model(tf.ones((1, 784)))

# Copy weights from functional_model to subclassed_model.
subclassed_model.set_weights(functional_model.get_weights())

assert len(functional_model.weights) == len(subclassed_model.weights)
for a, b in zip(functional_model.weights, subclassed_model.weights):
    np.testing.assert_allclose(a.numpy(), b.numpy())

The case of stateless layers

由于无状态层不会更改权重的顺序或数量,因此即使存在额外的/缺少的无状态层,模型也可以具有兼容的体系结构。

inputs = keras.Input(shape=(784,), name="digits")
x = keras.layers.Dense(64, activation="relu", name="dense_1")(inputs)
x = keras.layers.Dense(64, activation="relu", name="dense_2")(x)
outputs = keras.layers.Dense(10, name="predictions")(x)
functional_model = keras.Model(inputs=inputs, outputs=outputs, name="3_layer_mlp")

inputs = keras.Input(shape=(784,), name="digits")
x = keras.layers.Dense(64, activation="relu", name="dense_1")(inputs)
x = keras.layers.Dense(64, activation="relu", name="dense_2")(x)

# Add a dropout layer, which does not contain any weights.
x = keras.layers.Dropout(0.5)(x)
outputs = keras.layers.Dense(10, name="predictions")(x)
functional_model_with_dropout = keras.Model(
    inputs=inputs, outputs=outputs, name="3_layer_mlp"
)

functional_model_with_dropout.set_weights(functional_model.get_weights())

用于将权重保存到磁盘并重新加载的API

可以通过以下格式调用model.save_weights将权重保存到磁盘:

  • TensorFlow Checkpoint
  • HDF5
    model.save_weights的默认格式为TensorFlow检查点。 有两种指定保存格式的方法:
  • save_format argument: Set the value to save_format=“tf” or save_format=“h5”.
  • path argument: If the path ends with .h5 or .hdf5, then the HDF5 format is used. Other suffixes will result in a TensorFlow checkpoint unless save_format is set.

TF Checkpoint format

案例

# Runnable example
sequential_model = keras.Sequential(
    [
        keras.Input(shape=(784,), name="digits"),
        keras.layers.Dense(64, activation="relu", name="dense_1"),
        keras.layers.Dense(64, activation="relu", name="dense_2"),
        keras.layers.Dense(10, name="predictions"),
    ]
)
sequential_model.save_weights("ckpt")
load_status = sequential_model.load_weights("ckpt")

# `assert_consumed` can be used as validation that all variable values have been
# restored from the checkpoint. See `tf.train.Checkpoint.restore` for other
# methods in the Status object.
load_status.assert_consumed()

格式详情

TensorFlow Checkpoint格式使用对象属性名称保存和恢复权重。 例如,考虑tf.keras.layers.Dense层。 该层包含两个权重:densed.kernel和densed.bias。 将图层保存为tf格式后,生成的检查点将包含键“内核”和“偏差”及其对应的权重值。 有关更多信息,请参见TF Checkpoint指南中的“加载机制”。
请注意,属性/图形边缘是以父对象中使用的名称而不是变量的名称命名的。 在下面的示例中考虑CustomLayer。 变量CustomLayer.var与“ var”一起作为键的一部分保存,而不是“ var_a”。

class CustomLayer(keras.layers.Layer):
    def __init__(self, a):
        self.var = tf.Variable(a, name="var_a")


layer = CustomLayer(5)
layer_ckpt = tf.train.Checkpoint(layer=layer).save("custom_layer")

ckpt_reader = tf.train.load_checkpoint(layer_ckpt)

ckpt_reader.get_variable_to_dtype_map()

转移学习的例子

inputs = keras.Input(shape=(784,), name="digits")
x = keras.layers.Dense(64, activation="relu", name="dense_1")(inputs)
x = keras.layers.Dense(64, activation="relu", name="dense_2")(x)
outputs = keras.layers.Dense(10, name="predictions")(x)
functional_model = keras.Model(inputs=inputs, outputs=outputs, name="3_layer_mlp")

# Extract a portion of the functional model defined in the Setup section.
# The following lines produce a new model that excludes the final output
# layer of the functional model.
pretrained = keras.Model(
    functional_model.inputs, functional_model.layers[-1].input, name="pretrained_model"
)
# Randomly assign "trained" weights.
for w in pretrained.weights:
    w.assign(tf.random.normal(w.shape))
pretrained.save_weights("pretrained_ckpt")
pretrained.summary()

# Assume this is a separate program where only 'pretrained_ckpt' exists.
# Create a new functional model with a different output dimension.
inputs = keras.Input(shape=(784,), name="digits")
x = keras.layers.Dense(64, activation="relu", name="dense_1")(inputs)
x = keras.layers.Dense(64, activation="relu", name="dense_2")(x)
outputs = keras.layers.Dense(5, name="predictions")(x)
model = keras.Model(inputs=inputs, outputs=outputs, name="new_model")

# Load the weights from pretrained_ckpt into model.
model.load_weights("pretrained_ckpt")

# Check that all of the pretrained weights have been loaded.
for a, b in zip(pretrained.weights, model.weights):
    np.testing.assert_allclose(a.numpy(), b.numpy())

print("\n", "-" * 50)
model.summary()

# Example 2: Sequential model
# Recreate the pretrained model, and load the saved weights.
inputs = keras.Input(shape=(784,), name="digits")
x = keras.layers.Dense(64, activation="relu", name="dense_1")(inputs)
x = keras.layers.Dense(64, activation="relu", name="dense_2")(x)
pretrained_model = keras.Model(inputs=inputs, outputs=x, name="pretrained")

# Sequential example:
model = keras.Sequential([pretrained_model, keras.layers.Dense(5, name="predictions")])
model.summary()

pretrained_model.load_weights("pretrained_ckpt")

# Warning! Calling `model.load_weights('pretrained_ckpt')` won't throw an error,
# but will *not* work as expected. If you inspect the weights, you'll see that
# none of the weights will have loaded. `pretrained_model.load_weights()` is the
# correct method to call.

通常建议对构建模型使用相同的API。 如果在“顺序”和“功能”或“功能和子类”等之间切换,则始终重建预训练模型并将预训练权重加载到该模型。
下一个问题是,如果模型架构完全不同,如何将权重保存并加载到不同的模型中? 解决方案是使用tf.train.Checkpoint保存和还原确切的图层/变量。
案例:

# Create a subclassed model that essentially uses functional_model's first
# and last layers.
# First, save the weights of functional_model's first and last dense layers.
first_dense = functional_model.layers[1]
last_dense = functional_model.layers[-1]
ckpt_path = tf.train.Checkpoint(
    dense=first_dense, kernel=last_dense.kernel, bias=last_dense.bias
).save("ckpt")

# Define the subclassed model.
class ContrivedModel(keras.Model):
    def __init__(self):
        super(ContrivedModel, self).__init__()
        self.first_dense = keras.layers.Dense(64)
        self.kernel = self.add_variable("kernel", shape=(64, 10))
        self.bias = self.add_variable("bias", shape=(10,))

    def call(self, inputs):
        x = self.first_dense(inputs)
        return tf.matmul(x, self.kernel) + self.bias


model = ContrivedModel()
# Call model on inputs to create the variables of the dense layer.
_ = model(tf.ones((1, 784)))

# Create a Checkpoint with the same structure as before, and load the weights.
tf.train.Checkpoint(
    dense=model.first_dense, kernel=model.kernel, bias=model.bias
).restore(ckpt_path).assert_consumed()

HDF5 format

HDF5格式包含按图层名称分组的权重。 权重是通过将可训练权重列表与不可训练权重列表(与layer.weights相同)连接而排序的列表。 因此,如果模型具有与保存在检查点中相同的图层和可训练状态,则可以使用hdf5检查点。
案例

# Runnable example
sequential_model = keras.Sequential(
    [
        keras.Input(shape=(784,), name="digits"),
        keras.layers.Dense(64, activation="relu", name="dense_1"),
        keras.layers.Dense(64, activation="relu", name="dense_2"),
        keras.layers.Dense(10, name="predictions"),
    ]
)
sequential_model.save_weights("weights.h5")
sequential_model.load_weights("weights.h5")

请注意,当模型包含嵌套图层时,更改layer.trainable可能导致不同的layer.weights排序。

class NestedDenseLayer(keras.layers.Layer):
    def __init__(self, units, name=None):
        super(NestedDenseLayer, self).__init__(name=name)
        self.dense_1 = keras.layers.Dense(units, name="dense_1")
        self.dense_2 = keras.layers.Dense(units, name="dense_2")

    def call(self, inputs):
        return self.dense_2(self.dense_1(inputs))


nested_model = keras.Sequential([keras.Input((784,)), NestedDenseLayer(10, "nested")])
variable_names = [v.name for v in nested_model.weights]
print("variables: {}".format(variable_names))

print("\nChanging trainable status of one of the nested layers...")
nested_model.get_layer("nested").dense_1.trainable = False

variable_names_2 = [v.name for v in nested_model.weights]
print("\nvariables: {}".format(variable_names_2))
print("variable ordering changed:", variable_names != variable_names_2)

迁移学习案例

从HDF5加载预训练的权重时,建议将权重加载到原始检查点模型中,然后将所需的权重/图层提取到新模型中

def create_functional_model():
    inputs = keras.Input(shape=(784,), name="digits")
    x = keras.layers.Dense(64, activation="relu", name="dense_1")(inputs)
    x = keras.layers.Dense(64, activation="relu", name="dense_2")(x)
    outputs = keras.layers.Dense(10, name="predictions")(x)
    return keras.Model(inputs=inputs, outputs=outputs, name="3_layer_mlp")


functional_model = create_functional_model()
functional_model.save_weights("pretrained_weights.h5")

# In a separate program:
pretrained_model = create_functional_model()
pretrained_model.load_weights("pretrained_weights.h5")

# Create a new model by extracting layers from the original model:
extracted_layers = pretrained_model.layers[:-1]
extracted_layers.append(keras.layers.Dense(5, name="dense_3"))
model = keras.Sequential(extracted_layers)
model.summary()

参考文献

Serialization and saving

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值