过河

  1. Description

在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧。在桥上有一些石子,青蛙很讨厌踩在这些石子上。由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,……,L(其中L是桥的长度)。坐标为0的点表示桥的起点,坐标为L的点表示桥的终点。青蛙从桥的起点开始,不停的向终点方向跳跃。一次跳跃的距离是S到T之间的任意正整数(包括S,T)。当青蛙跳到或跳过坐标为L的点时,就算青蛙已经跳出了独木桥。

题目给出独木桥的长度L,青蛙跳跃的距离范围S,T,桥上石子的位置。你的任务是确定青蛙要想过河,最少需要踩到的石子数。
Input

输入的第一行有一个正整数L(1 <= L <= 10^9),表示独木桥的长度。第二行有三个正整数S,T,M,分别表示青蛙一次跳跃的最小距离,最大距离,及桥上石子的个数,其中1 <= S <= T <= 10,1 <= M <= 100。第三行有M个不同的正整数分别表示这M个石子在数轴上的位置(数据保证桥的起点和终点处没有石子)。所有相邻的整数之间用一个空格隔开。
Output

输出只包括一个整数,表示青蛙过河最少需要踩到的石子数。
Sample Input
10
2 3 5
2 3 5 6 7
Sample Output

2

2.思路
状态转移方程:dp[i]=min(dp[i],f[j]+v[i])
桥很长,但是石子数很少,也就是说,中间可能存在很长的一段空白区域,而这段空白区域就是造成大量无效运算的元凶,需要我们将这部分空白区域进行压缩。
现在,我们假设每次走p或者p+1步,则有 px+(p+1)y=s。
1.gcd(p+1,p)=gcd(1,p)=1,即p与p+1的最大公约数是1;
2.由扩展欧几里得可知,对于二元一次方程组:px+(p+1)y==gcd(p,p+1)是有整数解的,即可得:
px+(p+1)y==s是一定有整数解的。
假设px+(p+1)y==s的解为:x=x0+(p+1)t,y=y0-pt。令0<=x<=p(通过增减t个p+1来实现),s>p*(p+1)-1,则有:y=(s-px)/(p+1)>=(s-p*p)/(P+1)>(p*(p+1)-1-px)/(p+1)>-1>=0
即表示,当s>=p*(p+1)时,px+(p+1)y==s有两个非负整数解,每次走p步或者p+1步,p*(p+1)之后的地方均能够到达。如果两个石子之间的距离大于p*(p+1),那么就可以直接将他们之间的距离更改为p*(p+1)。
综上,得到压缩路径的方法:若两个石子之间的距离>t*(t-1),则将他们的距离更改为t*(t-1)。t*(t-1)取90.

代码:

#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
int a[200], dp[20000],v[20000];//a[i]为第i个石子距起点的长度,dp[i]为到i点时最少要踩得石子数,v[i]表示距起点距离为i的点有一个石子
int main()
{
    int L, S, T, N, i,  j;
    while (cin >> L)
    {
        memset(a, 0, sizeof(a));
        memset(dp, 10, sizeof(dp));
        cin >> S >> T >> N;
        for (i = 1;i <= N;i++)
            cin >> a[i];
        sort(a + 1, a + 1 + N);a[N + 1] = L;
        if (S == T)
        {
            int count = 0;
            for (i = 1;i <= N;i++)
                if (a[i] % S == 0) count++;
            cout << count << endl;
            continue;
        }
        for (i = 1;i <= N+1;i++)
        {
            if (a[i] - a[i - 1] > 90)
            {
                int t = a[i] - a[i - 1] - 90;
                for (j = i;j <= N + 1;j++)
                    a[j] -= t;
            }
        }//压缩路径
        for (i = 1;i <= N;i++)
            v[a[i]] = 1;
        L = a[N + 1];
        dp[0] = 0;
        for (i = 1;i <= L;i++)
        {
            for (j = i - T;j <= i - S;j++)
            {
                if (j >=0)
                {
                    if (dp[i] >= (dp[j] + v[i]))
                        dp[i] = dp[j] + v[i];
                }
            }
        }//dp状态方程
        cout << dp[L] << endl;
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值