寒武纪MLU结合Deepseek-R1-Distill实现本地知识库部署


前言

本章节将使用xinference启动 LLM+检索模型服务,然后使用Langchain-chatchat接收模型服务api,并录入知识库,实现本地知识库部署。


一、平台环境准备

镜像选择:pytorch:v24.10-torch2.4.0-torchmlu1.23.1-ubuntu22.04-py310
【请注意仔细查看自己的镜像版本,老版本改法,请查阅之前文章】

卡选择:任意一款MLU3系列及以上卡

二、模型下载

1.DeepSeek-R1-Distill-Qwen-14B模型下载

apt install git-lfs
git-lfs clone https://www.modelscope.cn/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.git

2.bge-large-zh-v1.5检索模型下载

git-lfs clone https://www.modelscope.cn/AI-ModelScope/bge-large-zh-v1.5.git

rerank模型也可自行下载方式与下面一致,这里不做展示

3.基础环境安装

pip install sentence-transformers transfromers accelerate

三、Xinference部署

git clone -b v1.2.1 https://githubfast.com/xorbitsai/inference.git #拷贝源代码
python /torch/src/torch_mlu/tools/torch_gpu2mlu/torch_gpu2mlu.py -i inference/
#webui安装
apt install npm -y
cd inference && python setup.py build_web
cd .. && pip install -e ./inference_mlu #源码编译 
##全局搜索【可以用vscode全局替换】
bfloat16 -> float16 #仅370

至此环境安装完成,简单起一个webui测试下环境

xinference-local #命令行运行

找到对应模型按照红框配置

1.LLM模型启动

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
至此大模型启动完成,

2.EMBEDDING 模型启动

在这里插入图片描述


出现IP+端口即服务部署完成,接着开始部署langchain-chatchat

四、Langchain-chatchat部署

pip install langchain-chatchat -U
#回到刚才路径在
pip install -e ./inference_mlu
export CHATCHAT_ROOT=/workspace/volume/guojunceshi2/set_langchain/ #设置该环境变量可以让我们找到自己的Yaml配置文件
cp -r bge-large-zh-v1.5/ set_langchain/data/knowledge_base/samples/vector_store/ #检索模型拷贝到这个路径下
# 解决nltk_data问题
cd set_langchain/data/ && rm -rf nltk_data && git clone https://gitee.com/maximnum/nltk_data.git
#如果你已经启动了 Xinference 服务,可以直接指定 Xinference API 地址、LLM 模型、Embedding 模型
chatchat init -x http://127.0.0.1:9997/v1 -l deepseek-r1-distill-qwen -e bge-large-zh-v1.5 -r
#如果你有自己的数据集你可以不用开源的数据集做测试,直接开始下一步

注意安装完langchain后,建议在执行一次,pip install -e ./inference_mlu ,因为两个包感觉有点冲突

五、部署结果展示 or 用自己的数据集做问答

chatchat start -a
#之后访问8501端口界面

在这里插入图片描述
LLM能力如上,接着开始演示如何用自己的数据集做问答
在这里插入图片描述
在这里插入图片描述
简单上传一个自我介绍文档,看下效果
在这里插入图片描述

可以适当调整阈值,蓝色框为思考,其他部分为最后结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值