VideoStorm,NSDI,2017

VideoStorm是一个不开放源代码的集群系统,专注于处理手动拍摄的两个月视频数据。该系统使用了work-conservative fair scheduler进行公平调度。评估指标包括视频质量、处理中超过滞后目标的帧数以及系统的整体效用。
摘要由CSDN通过智能技术生成

VideoStorm


应用场景:
车牌识别
车辆计数
DNN分类
对象跟踪
解决的问题:
查询分析中资源配置和质量的问题
描述:
VideoStorm是一个视频分析系统,可以扩展为处理大型集群中的数千个视频流。
Motivation:
视频分析可能具有很高的资源需求;同时由于视频流的高处理成本和高数据速率,所以资源管理很重要
(1)多维资源配置的质量权衡
(2)不同的质量和滞后要求(滞后:时延,即帧到达和帧处理的时间差)
消费站:质量高,滞后可以很久
智能交通:质量中等,滞后在几秒内
警笛:质量高,滞后在几秒内
Goal:
决定 配置和资源分配,以最大程度地 提高质量并最大程度地 减少资源容量内的滞后
Problem/Challenges:
(一) 没有关于查询配置的资源需求和质量的分析模型,而且大量的配置使得估计资源质量状况的成本很高;
(二) 表达单个查询和集群中所有查询的质量和滞后目标是不容易的;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值