VideoStorm
应用场景:
车牌识别
车辆计数
DNN分类
对象跟踪
解决的问题:
查询分析中资源配置和质量的问题
描述:
VideoStorm是一个视频分析系统,可以扩展为处理大型集群中的数千个视频流。
Motivation:
视频分析可能具有很高的资源需求;同时由于视频流的高处理成本和高数据速率,所以资源管理很重要
(1)多维资源配置的质量权衡
(2)不同的质量和滞后要求(滞后:时延,即帧到达和帧处理的时间差)
消费站:质量高,滞后可以很久
智能交通:质量中等,滞后在几秒内
警笛:质量高,滞后在几秒内
Goal:
决定 配置和资源分配,以最大程度地 提高质量并最大程度地 减少资源容量内的滞后。
Problem/Challenges:
(一) 没有关于查询配置的资源需求和质量的分析模型,而且大量的配置使得估计资源质量状况的成本很高;
(二) 表达单个查询和集群中所有查询的质量和滞后目标是不容易的;