加权平均法和移动加权法的例题

一、 加权平均法
  概念:加权平均法亦称全月一次加权平均法,是指以当月全部进货数量加上月初存货数量作为权数,去除当月全部进货成本加上月初存货成本,计算出存货的加权平均单位成本,以此为基础计算当月发出存货的成本和期末存货的成本的一种方法。

  加权平均法计算公式:
  存货的加权平均单位成本=(月初结存货成本+本月购入存货成本)/(月初结存存货数量+本月购入存货数量)

  月末库存存货成本=月末库存存货数量×存货加权平均单位成本

  本期发出存货的成本=本期发出存货的数量×存货加权平均单位成本   或   =期初存货成本+本期收入存货成本-期末存货成本

  举例:某商店月初有A服装10件,每件单价80元。本月5日进货A服装30件,每件单价85元,本月20日又进货20件,每件单价95元。月未盘点还剩15件,用加权平均法,计算期未存货成本。
  第一步:计算购入存货数量50件(30+20)和本月购入存货成本4450元(30×85+20×
  95)
  第二步:存货的加权平均单位成本,根据公式 =(800+4450)÷(10+50)=87.5元

  第三步:计算月末库存存货成本,根据公式 =15×87.5=1312.5

  二、移动加权平均法

  概念:移动加权平均法就是对每次进货的成本加上原有的库存存货的成本,除以每次进货数量加上原有库存存货的数量,据以计算加权平均单位成本,作为在下次进货前计算各次发出存货成本依据的一种方法。

  计算公式如下:

  1.存货单位成本=(原有库存存货的实际成本+本次进货的实际成本)/(原有库存存货数量+本次进货数量)

  2.本次发出存货的成本=本次发出存货数量*本次发货前的实际成本

  3.本月月末库存存货成本=月末库存存货的数量*本月月末存货单位成本

  采用移动平均法能够使企业管理者及时了解存货的结存情况,计算的平均单位成本以及发出和结存的存货成本比较客观。但由于每次收货都要计算一次平均单价,计算工作量较大,对收发较频繁的企业不适用,当然现在采用会计电算化,可以由电脑程序自动生成,也是比较简单的。
### 软件工程经济学中的模糊综合评价应用 在软件工程项目评估中,模糊综合评价被广泛应用来处理具有不确定性主观性的多因素决策问。此方能够有效融合定性与定量指标,在面对复杂环境下的项目选择、风险评估等方面表现出色。 #### 示例题目解析 假设某公司计划开发一款新的移动应用程序,并希望通过模糊综合评价对该项目的可行性进行评估。考虑四个主要影响因子:市场需求(Market Demand, MD),技术难度(Technical Difficulty, TD),成本效益(Cost Efficiency, CE)以及团队能力(Team Capability, TC)。每个因子的重要性权重分别为 w_MD=0.35, w_TD=0.25, w_CE=0.2 w_TC=0.2[^4]。 对于每一个影响因子,定义三个等级:“高(High)”、“中(Medium)”“低(Low)”。根据专家意见或历史数据分析得到各等级对应的隶属度函数值如下表所示: | 影响因子 | 高 (High) | 中 (Medium)| 低 (Low) | | --- | --- | --- | ---| | 市场需求 | 0.8 | 0.15 | 0.05 | | 技术难度 | 0.1 | 0.6 | 0.3 | | 成本效益 | 0.7 | 0.2 | 0.1 | | 团队能力 | 0.9 | 0.05 | 0.05 | 通过计算加权平均得分 S=(w_MD*MD + w_TD*TD + w_CE*CE + w_TC*TC), 可得出该新移动应用项目的总体评价值。如果S接近于1,则表明该项目非常值得投资;反之则需谨慎对待。 ```python def fuzzy_comprehensive_evaluation(w_md, w_td, w_ce, w_tc, md_high, td_medium, ce_low, tc_high): """ 计算模糊综合评价分数 参数: w_md : float - 市场需求权重 w_td : float - 技术难度权重 w_ce : float - 成本效率权重 w_tc : float - 团队能力权重 各项评分参数... 返回: score : float - 综合评价总分 """ # 加权获得最终得分 score = ( w_md * md_high + w_td * td_medium + w_ce * ce_low + w_tc * tc_high ) return round(score, 2) # 应用实例调用 score = fuzzy_comprehensive_evaluation(0.35, 0.25, 0.2, 0.2, 0.8, 0.6, 0.1, 0.9) print(f"项目综合得分为 {score}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值