coalesce
def coalesce(numPartitions: Int, shuffle: Boolean = false)(implicit ord: Ordering[T] = null): RDD[T]
该函数用于将RDD进行重分区,使用HashPartitioner。
第一个参数为重分区的数目,第二个为是否进行shuffle,默认为false;
以下面的例子来看:
- scala> var data = sc.textFile("/tmp/lxw1234/1.txt")
- data: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[53] at textFile at :21
-
- scala> data.collect
- res37: Array[String] = Array(hello world, hello spark, hello hive, hi spark)
-
- scala> data.partitions.size
- res38: Int = 2 //RDD data默认有两个分区
-
- scala> var rdd1 = data.coalesce(1)
- rdd1: org.apache.spark.rdd.RDD[String] = CoalescedRDD[2] at coalesce at :23
-
- scala> rdd1.partitions.size
- res1: Int = 1 //rdd1的分区数为1
-
-
- scala> var rdd1 = data.coalesce(4)
- rdd1: org.apache.spark.rdd.RDD[String] = CoalescedRDD[3] at coalesce at :23
-
- scala> rdd1.partitions.size
- res2: Int = 2 //如果重分区的数目大于原来的分区数,那么必须指定shuffle参数为true,//否则,分区数不便
-
- scala> var rdd1 = data.coalesce(4,true)
- rdd1: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[7] at coalesce at :23
-
- scala> rdd1.partitions.size
- res3: Int = 4
-
repartition
def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]
该函数其实就是coalesce函数第二个参数为true的实现
- scala> var rdd2 = data.repartition(1)
- rdd2: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[11] at repartition at :23
-
- scala> rdd2.partitions.size
- res4: Int = 1
-
- scala> var rdd2 = data.repartition(4)
- rdd2: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[15] at repartition at :23
-
- scala> rdd2.partitions.size
- res5: Int = 4
转载请注明:lxw的大数据田地 » Spark算子:RDD基本转换操作(2)–coalesce、repartition