比Pandas快100倍?Dask并行计算让你的大数据处理飞起来!

1. Dask 简介

  • 是什么?
    Dask 是一个灵活的并行计算库,用于在 Python 中处理超出内存限制的大型数据集。它模仿了 NumPy、Pandas 和 Scikit-learn 的 API,但支持分布式计算。

  • 为什么使用?

    • 处理比内存大的数据。

    • 利用多核 CPU 或分布式集群加速计算。

    • 无缝兼容现有的 Python 生态系统(如 Pandas、NumPy)。


2. 安装 Dask

# 安装核心库
pip install dask

# 安装分布式模块和额外依赖
pip install dask[distributed]  # 分布式计算支持
pip install dask[dataframe]    # DataFrame 支持
pip install dask-ml            # 机器学习支持

3. Dask 核心组件

(1) Dask Array
  • 用于处理大型多维数组(类似 NumPy)。

  • 示例代码

    import dask.array as da
    
    # 创建一个大型数组(分块存储)
    x = da.random.random((10000, 10000), chunks=(1000, 1000))  # 分块为 1000x1000
    y = x + x.T  # 延迟计算,不会立即执行
    result = y.mean()  # 定义计算逻辑
    
    # 触发实际计算
    print(result.compute())
(2) Dask DataFrame
  • 用于处理大型表格数据(类似 Pandas)。

  • 示例代码

    import dask.dataframe as dd
    
    # 从 CSV 文件读取数据(分块加载)
    df = dd.read_csv('large_dataset.csv', blocksize=25e6)  # 25MB 每块
    result = df.groupby('category').price.mean().compute()  # 分组聚合
    print(result)
(3) Dask Bag
  • 处理半结构化数据(如 JSON 文件、日志文件)。

  • 示例代码

    import dask.bag as db
    
    # 读取 JSON 数据
    bag = db.read_text('logs/*.json').map(json.loads)
    filtered = bag.filter(lambda x: x['value'] > 10).pluck('name')
    
    # 转换为列表
    print(filtered.compute())
(4) Dask Delayed
  • 并行化任意 Python 函数。

  • 示例代码

    from dask import delayed
    
    @delayed
    def square(x):
        return x ** 2
    
    @delayed
    def sum_list(lst):
        return sum(lst)
    
    # 创建延迟任务
    tasks = [square(i) for i in range(10)]
    total = sum_list(tasks)
    
    # 并行执行
    print(total.compute())  # 输出 285

4. 分布式计算

(1) 本地集群
from dask.distributed import Client

client = Client()  # 启动本地集群
# 执行任务(自动分配资源)
result = some_dask_task.compute()
client.close()
(2) 分布式集群
  1. 启动调度器(终端):

    dask-scheduler
  2. 启动多个工作节点(终端):

    dask-worker <scheduler-ip>:<scheduler-port>
  3. 连接集群:

    from dask.distributed import Client
    client = Client("<scheduler-address>")

5. 高级功能

(1) 数据持久化
  • 将中间结果缓存到内存或磁盘:

    df = df.persist()  # 缓存到内存
(2) 性能优化
  • 调整分块大小(chunks参数)。

  • 使用任务图可视化工具:

    result.visualize()  # 生成任务依赖图
(3) 集成其他库
  • 机器学习dask-ml):

    from dask_ml.linear_model import LogisticRegression
    
    model = LogisticRegression()
    model.fit(X_train, y_train)
  • 与 Pandas/NumPy 互转

    dask_array = da.from_array(numpy_array, chunks=100)
    pandas_df = dask_df.compute()

6. 资源推荐


通过以上步骤,你可以快速上手 Dask,高效处理大规模数据任务!遇到复杂问题时,记得利用 Dask 的任务可视化和分布式监控工具(如 Dashboard)进行调试。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值